Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 457: 140124, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38908239

RESUMO

Phenolics in bound form extensively exist in cereal dietary fiber, especially insoluble fiber, while their release profile in gastrointestinal tract and contribution to the potential positive effects of dietary fiber in modulating gut microbiota still needs to be disclosed. In this work, the composition of bound phenolics (BPs) in triticale insoluble dietary fiber (TIDF) was studied, and in vitro gastrointestinal digestion as well as colonic fermentation were performed to investigate BPs liberation and their role in regulating intestinal flora of TIDF. It turned out that most BPs were unaccessible in digestion but partly released continuously during fermentation. 16 s rRNA sequencing demonstrated that TIDF possessed prebiotic effects by promoting anti-inflammatory while inhibiting proinflammatory bacteria alongside boosting SCFAs production and antioxidative BPs contributed a lot to these effects. Results indicated that TIDF held capabilities to regulate intestinal flora and BPs were important functional components to the health benefits of cereal dietary fiber.

2.
Small ; 20(24): e2310992, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155518

RESUMO

With the rapid development and increasing popularity of electric vehicles and wearables, battery safety has become a leading focus in the field of energy storage research. Specifically, aluminum-ion batteries are gaining increasing attention as low-cost energy-storage systems with high safety levels and theoretical energy density. However, the dense alumina passivation layer on the aluminum anode surface and slow kinetic performance of commonly used ionic liquid electrolytes still render poor performance. This report presents a new type of aluminum-derived lithium-ion battery (ALIB) that maintains a certain discharge performance under damaging conditions, including continuous bending, high- and low-temperature environments, and shearing. This new ALIB effectively meets the current demand for flexible and wearable batteries. The prepared ALIB achieves a stable cycle of 130 mAh g-1 specific capacity and ≈260 Wh kg-1 theoretical energy density at a wide voltage platform of 2 V and a test temperature of 25 °C without undergoing combustion. Additionally, the study analyzes the reaction mechanism of this ALIB based on density functional theory and conducts ex situ XRD and XPS analyses to elucidate the underlying storage mechanism.

3.
Adv Sci (Weinh) ; 10(30): e2303922, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37672883

RESUMO

As water-saturated polymer networks, hydrogels are a growing family of soft materials that have recently become promising candidates for flexible electronics application. However, it remains still difficult for hydrogel-based strain sensors to achieve the organic unity of mechanical properties, electrical conductivity, and water retention. To address this challenge, based on the template, the excellent properties of MXene nanoflakes (rich surface functional groups, high specific surface area, hydrophilicity, and conductivity) are fully utilized in this study to prepare the P(AA-co-AM)/MXene@PDADMAC semi-interpenetrating network (semi-IPN) hydrogel. The proposed hydrogel continues to exhibit excellent strain response and flexibility after 30 days of storage at room temperature, and its performance do not decrease after 1100 cycles. Considering these characteristics, a hydrogel-based device for converting sign language into Chinese characters is successfully developed and optimized using machine learning. Therefore, this study provides novel insight and application directions for hydrogel families.

4.
Small ; 19(34): e2301815, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37183303

RESUMO

Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High-power density supercapacitors and high-energy density rechargeable batteries are some of the most effective devices, while lithium-ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium-ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene-based composites in various kinds of magnesium-ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research.

5.
ACS Appl Mater Interfaces ; 14(10): 12367-12374, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35245024

RESUMO

Flexible pressure sensors may be used in electronic skin (e-skin), artificial intelligence devices, and disease diagnosis, which require a large response range and high sensitivity. An appropriate design of the structure of the active layer can help effectively solve this problem. Herein, we aim at developing a wearable pressure sensor using the MXene/ZIF-67/polyacrylonitrile (PAN) nanofiber film, fabricated by electrospinning technology. Owing to the rough structure and three-dimensional network architecture, the MXene/ZIF-67/PAN film-based device displays a broad working range (0-100 kPa), good sensitivity (62.8 kPa-1), robust mechanical stability (over 10,000 cycles), and fast response/recovery time (10/8 ms). Moreover, the fabricated pressure sensors can be used to detect and differentiate between different body motion information, including elbow bending, finger movements, and wrist pulses. Overall, this design of a rough three-dimensional conductive network structure shows potential in the field of wearable electronics and medical devices.

6.
J Colloid Interface Sci ; 599: 109-118, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33933785

RESUMO

MXenes with unique 2D open structure, large surface-area-to-volume ratios, high pseudo-capacitance, and conductivity are attractive for advanced supercapacitor electrodes. However, the restacking issue of MXenes hinders ion accessibility, resulting in the reduction of volume performance, mass load, and speed capability. To address these issues, a facile hydrothermal synthesis strategy is proposed to fabricate Co3O4 nanoparticles-MXene (Co-MXene) composite by the self-assembly process. Co3O4 nanoparticles, introduced in the MXene matrix, effectively prevent self-restacking and shorten ion/electron transport paths. Consequently, the obtained Co-MXene electrode delivers the high-performance of 1081F g-1 at a current density of 0.5 A g-1, surpassing the pristine MXene electrode (89F g-1 at 0.5 A g-1). Being assembled into asymmetric supercapacitors (ASC), a high energy density of 26.06 Wh kg-1 at 700 W kg-1 was realized. After 8000 cycles, the ASC device maintains 83% of initial specific capacitance at 2 A g-1. This work highlights a simple and efficient method for developing high-performance MXene-based electrodes for supercapacitors.

7.
Adv Mater ; 33(22): e2007890, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33899274

RESUMO

Accurate and continuous detection of physiological signals without the need for an external power supply is a key technology for realizing wearable electronics as next-generation biomedical devices. Herein, it is shown that a MXene/black phosphorus (BP)-based self-powered smart sensor system can be designed by integrating a flexible pressure sensor with direct-laser-writing micro-supercapacitors and solar cells. Using a layer-by-layer (LbL) self-assembly process to form a periodic interleaving MXene/BP lamellar structure results in a high energy-storage capacity in a direct-laser-writing micro-supercapacitor to drive the operation of sensors and compensate the intermittency of light illumination. Meanwhile, with MXene/BP as the sensitive layer in a flexible pressure sensor, the pressure sensitivity of the device can be improved to 77.61 kPa-1 at an optimized elastic modulus of 0.45 MPa. Furthermore, the smart sensor system with fast response time (10.9 ms) shows a real-time detection capability for the state of the human heart under physiological conditions. It is believed that the proposed study based on the design and integration of MXene materials will provide a general platform for next-generation self-powered electronics.

8.
Front Plant Sci ; 12: 772644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35251060

RESUMO

In summer, high light and elevated temperature are the most common abiotic stresses. The frequent occurrence of monsoon exposes the abaxial surface of soybean [Glycine max (L.) Merr.] leaves to direct solar radiation, resulting in irreversible damage to plant photosynthesis. In this study, chlorophyll a fluorescence was used to evaluate the functional status of photosystem II (PSII) in inverted leaves under elevated temperature and high light. In two consecutive growing seasons, we tested the fluorescence and gas exchange parameters of soybean leaves for 10 days and 15 days (5 days after recovery). Inverted leaves had lower tolerance compared to normal leaves and exhibited lower photosynthetic performance, quantum yield, and electron transport efficiency under combined elevated temperature and high light stress, along with a significant increase in absorption flux per reaction center (RC) and the energy dissipation of the RC, resulting in significantly lower performance indexes (PIABS and PItotal) and net photosynthetic rate (P n ) in inverted leaves. High light and elevated temperature caused irreversible membrane damage in inverted leaves, as photosynthetic performance parameters (P n , PIABS, and PItotal) did not return to control levels after inverted leaves recovered. In conclusion, inverted leaves exhibited lower photosynthetic performance and PSII activity under elevated temperature and high light stress compared to normal leaves.

9.
Sci Rep ; 10(1): 20669, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244037

RESUMO

Triticale is tolerant of many environmental stresses, especially highly resistant to salt stress. However, the molecular regulatory mechanism of triticale seedlings under salt stress conditions is still unclear so far. In this study, a salt-responsive transcriptome analysis was conducted to identify candidate genes or transcription factors related to salt tolerance in triticale. The root of salt-tolerant triticale cultivars TW004 with salt-treated and non-salt stress at different time points were sampled and subjected to de novo transcriptome sequencing. Total 877,858 uniquely assembled transcripts were identified and most contigs were annotated in public databases including nr, GO, KEGG, eggNOG, Swiss-Prot and Pfam. 59,280, 49,345, and 85,922 differentially expressed uniquely assembled transcripts between salt treated and control triticale root samples at three different time points (C12_vs_T12, C24_vs_T24, and C48_vs_T48) were identified, respectively. Expression profile and functional enrichment analysis of DEGs found that some DEGs were significantly enriched in metabolic pathways related to salt tolerance, such as reduction-oxidation pathways, starch and sucrose metabolism. In addition, several transcription factor families that may be associated with salt tolerance were also identified, including AP2/ERF, NAC, bHLH, WRKY and MYB. Furthermore, 14 DEGs were selected to validate the transcriptome profiles via quantitative RT-PCR. In conclusion, these results provide a foundation for further researches on the regulatory mechanism of triticale seedlings adaptation to salt stress in the future.


Assuntos
Redes e Vias Metabólicas/genética , Estresse Salino/genética , Tolerância ao Sal/genética , Transcriptoma/genética , Triticale/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Oxirredução , Raízes de Plantas/genética , Plântula/genética , Fatores de Transcrição/genética
10.
ACS Nano ; 13(8): 9139-9147, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31330103

RESUMO

Achieving high deformability in response to minimal external stimulation while maximizing human-machine interactions is a considerable challenge for wearable and flexible electronics applications. Various natural materials or living organisms consisting of hierarchical or interlocked structures exhibit combinations of properties (e.g., natural elasticity and flexibility) that do not occur in conventional materials. The interlocked epidermal-dermal microbridges in human skin have excellent elastic moduli, which enhance and amplify received tactile signal transport. Herein, we use the sensing mechanisms inspired by human skin to develop Ti3C2/natural microcapsule biocomposite films that are robust and deformable by mimicking the micro/nanoscale structure of human skin-such as the hierarchy, interlocking, and patterning. The interlocked hierarchical structures can be used to create biocomposite films with excellent elastic moduli (0.73 MPa), capable of high deformability in response to various external stimuli, as verified by employing theoretical studies. The flexible sensor with a hierarchical and interlocked structure (24.63 kPa-1) achieves a 9.4-fold increase in pressure sensitivity compared to that of the planar structured Ti3C2-based flexible sensor (2.61 kPa-1). This device also exhibits a rapid response rate (14 ms) and good cycling reproducibility and stability (5000 times). In addition, the flexible pressure device can be used to detect and discriminate signals ranging from finger motion and human pulses to voice recognition.


Assuntos
Técnicas Biossensoriais , Cápsulas/química , Pele/química , Titânio/química , Elasticidade , Eletrônica , Humanos , Nanocompostos/química , Tato/efeitos dos fármacos , Tato/fisiologia , Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...