Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1359-1369, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35343165

RESUMO

UPLC-Q-TOF-MS combined with network pharmacology and experimental verification was used to explore the mechanism of acupoint sticking therapy(AST) in the intervention of bronchial asthma(BA). The chemical components of Sinapis Semen, Cory-dalis Rhizoma, Kansui Radix, Asari Radix et Rhizoma, and Zingiberis Rhizoma Recens were retrieved from TCMSP as self-built database. The active components in AST drugs were analyzed by UPLC-Q-TOF-MS, and the targets were screened out in TCMSP and Swiss-TargetPrediction. Targets of BA were collected from GeneCards, and the intersection of active components and targets was obtained by Venny 2.1.0. The potential targets were imported into STRING and DAVID for PPI, GO, and KEGG analyses. The asthma model induced by house dust mite(HDM) was established in mice. The mechanism of AST on asthmatic mice was explored by pulmonary function, Western blot, and flow cytometry. The results indicated that 54 active components were obtained by UPLC-Q-TOF-MS and 162 potential targets were obtained from the intersection. The first 53 targets were selected as key targets. PPI, GO, and KEGG analyses showed that AST presumedly acted on SRC, PIK3 CA, and other targets through active components such as sinoacutine, sinapic acid, dihydrocapsaicin, and 6-gingerol and regulated PI3 K-AKT, ErbB, chemokine, sphingolipid, and other signaling pathways to intervene in the pathological mechanism of BA. AST can improve lung function, down-regulate the expression of PI3 K and p-AKT proteins in lung tissues, enhance the expression of PETN protein, and reduce the level of type Ⅱ innate immune cells(ILC2 s) in lung tissues of asthmatic mice. In conclusion, AST may inhibit ILC2 s by down-regulating the PI3 K-AKT pathway to relieve asthmatic airway inflammation and reduce airway hyperresponsiveness.


Assuntos
Pontos de Acupuntura , Asma , Animais , Asma/tratamento farmacológico , Medicamentos de Ervas Chinesas , Imunidade Inata , Linfócitos , Camundongos , Farmacologia em Rede
2.
J Ethnopharmacol ; 235: 56-64, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30731181

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jianpi Yangzheng Xiaozheng Decoction (JPYZXZ) is an empirical compound prescription based on the theory of traditional Chinese medicine. JPYZXZ, which is "Qi-invigorating, spleen-strengthening and stasis-removing," can improve the quality of life of gastric cancer patients and prolong their survival; however, the exact mechanism underlying the antitumor effects of this compound is still not clear. AIM OF THE STUDY: The aim of this study is to clearly define the effect of JPYZXZ and its components, Jianpi Yangzheng Decoction (JPYZ) and Xiao Zheng San Jie Decoction (XZSJ), on inhibiting the progression of gastric cancer. MATERIALS AND METHODS: The effect of JPYZXZ and its components on the motility of gastric cancer MGC-803 cells was measured by MTT, adhesion, transwell assays and wound-healing assays. JPYZXZ, JPYZ and XZSJ were administered to 615 mice with gastric cancer xenografts, and their effect on the inhibition of subcutaneous transplantation was analyzed. THP-1 monocyte cells were used to establish tumor-associated macrophage (TAM) models. The polarized state of the TAMs was detected by Flow Cytometry, ELISA and Immunohistochemistry. The mRNA and protein expression of tumor epithelial-mesenchymal transition (EMT) and TAM-related genes was determined by Real-time PCR and Western Blot, respectively. RESULTS: We determined that both JPYZXZ and its components inhibited the progress of gastric cancer in vitro, and JPYZXZ was clearly more effective than JPYZ or XZSJ. The in vivo results demonstrated that the JPYZXZ and XZSJ group exhibited a significant decrease in the tumor weight compared to the control group. Further analysis indicated that JPYZXZ was more active than JPYZ or XZSJ in inhibiting the gastric cancer EMT transformation both in vivo and in vitro. However, JPYZ was more effective compared with JPYZXZ for inducing the phenotypic change in macrophages from M2 to M1. CONCLUSIONS: Our results demonstrate that both JPYZXZ and its components prevent the progress of gastric cancer. JPYZXZ inhibits the gastric cancer EMT more effectively than JPYZ and XZSJ, but JPYZ primarily works to regulate the phenotypic change in macrophages from M2 to M1.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Medicina Tradicional Chinesa/métodos , Camundongos , Neoplasias Gástricas/patologia , Células THP-1/efeitos dos fármacos , Células THP-1/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...