Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2703-2712, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37897277

RESUMO

Understanding the effects of upslope runoff and soil pipe collapse on slope water erosion can provide scien-tific basis for preventing Mollisol degradation caused by soil erosion. We conducted an experiment to investigate the effects of upslope inflow rate and soil pipe collapse on slope water erosion and to quantify the contribution of soil pipe erosion to slope soil erosion. The experiment included three inflow rates (30, 40, and 50 L·min-1) and three near-surface soil hydrological conditions (without soil pipe: NP; with soil pipe but no pipe flow: PF0; with pipe flow: PF1). The results showed that: 1) Slope soil erosion increased with increasing inflow rates; when the inflow rate increased from 30 L·min-1 to 40 and 50 L·min-1, slope soil erosion increased by 100.0%-111.5% and 214.8%-289.2%, respectively. 2) The soil pipe occurrence and pipe flow formation aggravated the slope water erosion process. At inflow rates of 30, 40, and 50 L·min-1, slope soil loss under the PF0 and PF1 treatments were 1.4-1.6 times and 1.7-2.1 times of that under the NP treatment. The contribution of soil pipe erosion to slope soil loss was 26.7%-37.6% under the PF0 treatment and 40.5%-51.9% under the PF1 treatment. 3) Soil pipe collapse intensified the rill erosion process. Compared with the NP treatment at 30, 40, and 50 L·min-1 inflow rate, rill erosion amounts under the PF0 and PF1 treatments increased by 38.1%-66.0% and by 93.7%-128.4%, respectively. Our results suggested that increasing upslope inflow rate resulted in higher surface runoff velocity, which promoted runoff detachment and transport capacity, and then aggrandized the amount of slope soil erosion. Moreover, soil pipe collapse exacerbated rill erosion process. When the soil pipe collapsed, all surface runoff was converted to soil pipe flow, which accelerated flow velocity and slope soil erosion process, and then increased the amount of slope soil erosion.


Assuntos
Solo , Água , China , Sedimentos Geológicos , Chuva , Movimentos da Água
2.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4177-4185, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34951258

RESUMO

Snowmelt erosion is an important way of soil loss in Chinese Mollisol region. However, little is known about the effects of seepage flow and soil thaw depth on hillslope snowmelt runoff erosion. An indoor simulated experiment was conducted to analyze the impacts of seepage flow and soil thaw depth on hillslope snowmelt erosion. There were two snowmelt flow rates (1 and 4 L·min-1), two soil thaw depths (5 and 10 cm), and two near-surface hydrological conditions (with and without seepage flow). The results showed that hillslope runoff depth and soil erosion amount in the treatment with seepage flow were 1.1 to 1.2 times and 1.3 to 1.9 times of those in the treatment without seepage flow, respectively. Under two snowmelt flow rates, when soil thaw depth increased from 5 cm to 10 cm, hillslope runoff depth and soil erosion amount increased by 10.0% to 13.5% and 15.4% to 37.1% in the treatment without seepage flow, respectively. In the treatment with seepage flow, when soil thaw depth shifted from 5 cm to 10 cm, hillslope runoff depth increased by 6.5% to 8.5%, and soil erosion amount remained stable. Moreover, hillslope rill development was comprehensively influenced by seepage flow, soil thaw depth, and snowmelt flow rate, with rill erosion amount occupying more than 72% of hillslope snowmelt erosion amount. Compared with the treatment without seepage flow, flow velocity and shear stress under the treatment with seepage flow increased by 20.3% to 23.2% and 37.0% to 51.3%, respectively; but Darcy-Weisbach friction coefficient reduced by 9.0% to 21.4%, which caused an increase of hillslope snowmelt erosion. In addition, seepage flow enhanced rill development, which caused rill erosion amount to increase by 43.6% to 69.9% compared with the treatment without seepage flow, and it further resulted in the increase of hillslope snowmelt erosion amount. The main reason for soil thaw depth enhancing hillslope snowmelt erosion amount under the treatment without seepage flow was that both sloping runoff erosivity and erodible materials increased with increasing soil thaw depth. Furthermore, soil thaw depth had a significant impact on hillslope rill morphology development under the treatment with seepage flow. Rill widening process was dominated when soil thaw depth was 5 cm, whereas rill incision process was dominant when soil thaw depth was 10 cm. This study could improve the understanding of hillslope snowmelt erosion mechanism in Chinese Mollisol region and provide theoretical guidance for the development of water erosion model.


Assuntos
Solo , Movimentos da Água , China , Sedimentos Geológicos , Hidrologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...