Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1330788, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352054

RESUMO

Introduction: Infectious diseases are major causes of morbidity and mortality worldwide, necessitating the rapid identification and accurate diagnosis of pathogens. While unbiased metagenomic next-generation sequencing (mNGS) has been extensively utilized in clinical pathogen identification and scientific microbiome detection, there is limited research about the application of nanopore platform-based mNGS in the diagnostic performance of various infectious fluid samples. Methods: In this study, we collected 297 suspected infectious fluids from 10 clinical centers and detected them with conventional microbiology culture and nanopore platform-based mNGS. The objective was to assess detective and diagnostic performance of nanopore-sequencing technology (NST) in real-world scenarios. Results: Combined with gold-standard culture and clinical adjudication, nanopore sequencing demonstrated nearly 100% positive predictive agreements in microbial-colonized sites, such as the respiratory and urinary tracts. For samples collected from initially sterile body sites, the detected microorganisms were highly suspected pathogens, and the negative predictive agreements were relatively higher than those in the microbial-colonized sites, particularly with 100% in abscess and 95.7% in cerebrospinal fluid. Furthermore, consistent performance was also observed in the identification of antimicrobial resistance genes and drug susceptibility testing of pathogenic strains of Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii. Discussion: Rapid NST is a promising clinical tool to supplement gold-standard culture, and it has the potential improve patient prognosis and facilitate clinical treatment of infectious diseases.


Assuntos
Doenças Transmissíveis , Mycobacterium tuberculosis , Sequenciamento por Nanoporos , Infecções Estafilocócicas , Humanos , Testes de Sensibilidade Microbiana , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Sensibilidade e Especificidade
2.
Front Microbiol ; 14: 1198926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664109

RESUMO

Objective: To examine the clinical efficacy, safety, and resistance of Ceftazidime-Avibactam (CAZ-AVI) in patients with Carbapenem-resistant Gram-negative bacilli (CR-GNB) infections. Methods: We retrospectively analyzed relevant data of CR-GNB infected patients receiving CAZ-AVI treatment, analyzed relevant factors affecting drug efficacy, and compared the efficacy and safety with patients receiving Polymyxin B treatment. Results: A total of 139 patients were included. Agranulocytosis, septic shock, SOFA score, and CAZ-AVI treatment course were independent risk factors affecting the prognosis of patients with CR-GNB infection treated with CAZ-AVI while prolonging the treatment course of CAZ-AVI was the only protective factor for bacterial clearance. The fundamental indicators showed no statistically significant differences between CAZ-AVI and Polymyxin B treatment groups. At the same time, the proportion of patients treated with monotherapy was significantly higher in the CAZ-AVI group than in the Polymyxin B group (37.2% vs. 8.9%, p < 0.05), the 30-day mortality rate of the CAZ-AVI treatment group (27.7% vs. 46.7%, p = 0.027) was lower than that of the Polymyxin B treatment group. The 30-day clinical cure rate (59.6% vs. 40% p = 0.030) and 14-day microbiological clearance rate (42.6% vs. 24.4%, p = 0.038) were significantly higher in the CAZ-AVI than in the Polymyxin B treatment group. Eighty nine patients were monitored for CAZ-AVI resistance, and the total resistance rate was 14.6% (13/89). The resistance rates of Carbapenem-resistant Klebsiella pneumoniae (CRKP) and Carbapenem-resistant Pseudomonas aeruginosa (CRPA) to CAZ-AVI were 13.5 and 15.4%, respectively. Conclusion: CAZ-AVI has shown high clinical efficacy and bacterial clearance in treating CR-GNB infections. Compared with Polymyxin B, CAZ-AVI significantly improved the outcome of mechanical ventilation in patients with septic shock, agranulocytosis, Intensive Care Unit (ICU) patients, bloodstream infection, and patients with SOFA score > 6, and had a lower incidence of adverse events. We monitored the emergence of CAZ-AVI resistance and should strengthen the monitoring of drug susceptibility in clinical practice and the rational selection of antibiotic regimens to delay the onset of resistance.

3.
Biomed Pharmacother ; 137: 111360, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33582451

RESUMO

By virtue of their small size, nanomaterials can cross the blood-brain barrier and, when modified to target specific cells or regions, can achieve high bioavailability at the intended site of action. Modified nanomaterials are therefore promising agents for the diagnosis and treatment of neurodegenerative diseases such as Alzheimer's disease (AD). Here we review the roles and mechanisms of action of nanomaterials in AD. First, we discuss the general characteristics of nanomaterials and their application to nanomedicine. Then, we summarize recent studies on the diagnosis and treatment of AD using modified nanomaterials. These studies indicate that using nanomaterials is a potential strategy for AD treatment by slowing the progression of AD through enhanced therapeutic effects.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Nanoestruturas/uso terapêutico , Animais , Barreira Hematoencefálica/metabolismo , Humanos , Nanomedicina/tendências , Medicina de Precisão
4.
Front Neurosci ; 14: 660, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714136

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by severe cognitive deficits and pathologically by amyloid plaques, neuronal loss, and neurofibrillary tangles. Abnormal amyloid ß-protein (Aß) deposition in the brain is often thought of as a major initiating factor in AD neuropathology. However, gamma-aminobutyric acid (GABA) inhibitory interneurons are resistant to Aß deposition, and Aß decreases synaptic glutamatergic transmission to decrease neural network activity. Furthermore, there is now evidence suggesting that neural network activity is aberrantly increased in AD patients and animal models due to functional deficits in and decreased activity of GABA inhibitory interneurons, contributing to cognitive deficits. Here we describe the roles played by excitatory neurons and GABA inhibitory interneurons in Aß-induced cognitive deficits and how altered GABA interneurons regulate AD neuropathology. We also comprehensively review recent studies on how GABA interneurons and GABA receptors can be exploited for therapeutic benefit. GABA interneurons are an emerging therapeutic target in AD, with further clinical trials urgently warranted.

5.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(1): 62-66, 2020 Jan 28.
Artigo em Chinês | MEDLINE | ID: mdl-32476374

RESUMO

OBJECTIVE: To investigate the effects of cerium oxide (CeO2) nanoparticles on the viabilities of nerve cells PC12 and SH-SY5Y. METHODS: CeO2 nanoparticles were synthesized, structures were characterized and properties were evaluated. PC12 cells and SH-SY5Y cells were treated with CeO2 nanoparticles at different concentrations (1, 2.5, 5, 10, 25, 50, 75, 100, 150 µg/ml) for 24 h and the cell viability was measured by MTT assay. Then PC12 cells and SH-SY5Y cells were co-treated with CeO2 and active oxygen scavenger NAC and the cells were stained with DCFH-DA probe for ROS. The number of cells and the fluorescence intensity were observed under a fluorescent inverted microscope. Differences were assessed by one-way ANOVA. RESULTS: After treatment with CeO2 nanoparticles, the viabilities of both PC12 cells (P<0.01) and SH-SY5Y cells (P<0.01) were decreased comparing with the control group. After staining with DCFH-DA probe, the fluorescence intensity of the nerve cells was enhanced depending on the concentration of CeO2 nanoparticles suggesting that CeO2 induced the generation of reactive oxygen species (ROS). The fluorescence intensity of PC12 cells was decreased after CeO2 nanoparticles (100 µg/ml) co-treatment with active oxygen scavenger NAC. Compared with CeO2 nanoparticles alone at 25 µg/ml (P<0.01), 50 µg/ml (P<0.01), 75 µg/ml (P<0.01), 100 µg/ml (P<0.01), the cell viability was significantly increased after co-treatment with NAC. CONCLUSION: CeO2 nanoparticles has a negative effect on the viabilities of nerve cells PC12 and SH-SY5Y, and the effect might be depend on ROS.


Assuntos
Sobrevivência Celular , Cério/farmacologia , Nanopartículas , Neurônios/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA