Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 18: 4857-4870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662688

RESUMO

Purpose: Herein, an emerging drug delivery system was constructed based on zeolite imidazole backbone (ZIF-8) to improve antibacterial defects of nanosilver (AgNPs), such as easily precipitated and highly cytotoxic. Methods: The homogeneous dispersion of AgNPs on ZIF-8 was confirmed by UV-Vis spectroscopy, FTIR spectroscopy, particle size analysis, zeta potential analysis, and SEM. The appropriate AgNPs loading ratio on ZIF-8 was screened through the cell and antibacterial experiments based on biosafety and antibacterial performance. The optimal environment for AgNPs@ZIF-8 to exert antibacterial performance was probed in the context of bacterial communities under different acid-base conditions. The potential mechanism of AgNPs@ZIF-8 to inhibit the common clinical strains was investigated by observing the biofilm metabolic activity and the level of reactive oxygen species (ROS) in bacteria. Results: The successful piggybacking of AgNPs by ZIF-8 was confirmed using UV-Vis spectroscopy, FTIR spectroscopy, particle size analysis, zeta potential analysis, and SEM characterization methods. Based on the bacterial growth curve (0-24 hours), the antibacterial ability of AgNPs@ZIF-8 was found to be superior to AgNPs. When the mass ratio of ZIF-8 and AgNPs was 1:0.25, the selection of AgNPs@ZIF-8 was based on its superior antimicrobial efficacy and enhanced biocompatibility. Notably, under weakly acidic bacterial microenvironments (pH=6.4), AgNPs@ZIF-8 demonstrated a more satisfactory antibacterial effect. In addition, experiments on biofilms showed that concentrations of AgNPs@ZIF-8 exceeding 1×MIC resulted in more than 50% biofilm removal. The nanomedicine was found to increase ROS levels upon detecting the ROS concentration in bacteria. Conclusion: Novel nanocomposites consisting of low cytotoxicity drug carrier ZIF-8 loaded with AgNPs exhibited enhanced antimicrobial effects compared to AgNPs alone. The pH-responsive nano drug delivery system, AgNPs@ZIF-8, exhibited superior antimicrobial activity in a mildly acidic environment. Moreover, AgNPs@ZIF-8 effectively eradicated pathogenic bacterial biofilms and elevated the intracellular level of ROS.


Assuntos
Antibacterianos , Nanocompostos , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Biofilmes , Concentração de Íons de Hidrogênio
2.
J Cancer Res Clin Oncol ; 149(13): 11661-11678, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37402968

RESUMO

PURPOSE: Clear cell renal cell carcinomas (ccRCCs) are the most common form of renal cancer in the world. The loss of extracellular matrix (ECM) stimulates cell apoptosis, known as anoikis. A resistance to anoikis in cancer cells is believed to contribute to tumor malignancy, particularly metastasis; however, the potential influence of anoikis on the prognosis of ccRCC patients is not fully understood. METHODS: In this study, anoikis-related genes (ARGs) with discrepant expression were selected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The anoikis-related gene signature (ARS) was built using a combination of the univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses. ARS was also evaluated for their prognostic value. We explored the tumor microenvironment and enrichment pathways between different clusters of ccRCC. We also examined differences in clinical characteristics, immune cell infiltration and drug sensitivity between the high- and low-risk sets. In addition, we utilized three external databases and quantitative real-time polymerase chain reaction (qRT-PCR) to validate the expression and prognosis of ARGs. RESULTS: Eight ARGs (PLAUR, HMCN1, CDKN2A, BID, GLI2, PLG, PRKCQ and IRF6) were identified as anoikis-related prognostic factors. According to Kaplan-Meier (KM) analysis, ccRCC patients with high-risk ARGs have a worse prognosis. The risk score was found to be a significant independent prognostic indicator. According to tumor microenvironment (TME) scores, stromal score, immune score, and estimated score of the high-risk group were superior to those of the low-risk group. There were significant differences between the two groups regarding the amount of infiltrated immune cells, immune checkpoint expression as well as drug sensitivity. A nomogram was constructed using ccRCC clinical features and risk scores. The signature and the nomogram both performed well in predicting overall survival (OS) for ccRCC patients. According to a decision curve analysis (DCA), clinical treatment options for patients with ccRCC could be improved using this model. CONCLUSION: The results of validation from external databases and qRT-PCR were basically agreement with findings in TCGA and GEO databases. The ARS serving as biomarkers may provide an important reference for individual therapy of ccRCC patients.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Prognóstico , Anoikis/genética , Neoplasias Renais/genética , Nomogramas , Microambiente Tumoral/genética , Fatores Reguladores de Interferon
3.
Mol Neurobiol ; 59(11): 6903-6917, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36053437

RESUMO

Obesity has become a public health epidemic worldwide and is associated with many diseases with high mortality including hypertension, diabetes, and heart disease. High-fat diet (HFD)-induced energy imbalance is one of the primary causes of obesity, but the underlying mechanisms are not fully elucidated. Our study showed that HFD reduced the level of hydrogen sulfide (H2S) and its catalytic enzyme cystathionine ß-synthase (CBS) in mouse hypothalamus and plasma. We found that HFD activated mTOR, IKK/NF-κB, the main pathway regulating inflammation. Activation of inflammatory pathway promoted the production of pro-inflammatory cytokines including IL-6, IL-1ß, and TNF-α, which caused cell damage and loss in the hypothalamus. The disturbance of the hypothalamic neuron circuits resulted in body weight gain in HFD-induced mice. Importantly, we also showed that restoration of H2S level with NaHS or activation of CBS with SAMe attenuated HFD-induced activation of mTOR, IKK/NF-κB signaling, which reduced the inflammation and the neuronal cell loss in the hypothalamus, and also inhibited body weight gain in mice. The same effects were obtained by inhibiting mTOR or NF-κB, which suggested that mTOR and NF-κB were the critical molecular factors involved in hypothalamic inflammation. Taken together, this study identified that HFD-induced hypothalamus inflammation plays a critical role in the development of obesity. Moreover, the inhibition of hypothalamic inflammation by regaining H2S level could be a potential therapeutic to prevent the development of obesity.


Assuntos
Sulfeto de Hidrogênio , NF-kappa B , Animais , Cistationina beta-Sintase/metabolismo , Citocinas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Inflamação/metabolismo , Interleucina-6/farmacologia , Camundongos , NF-kappa B/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
4.
Neurochem Res ; 47(11): 3318-3330, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35978229

RESUMO

Noise is a kind of sound that causes agitation and harms human health. Studies have shown that noise can lead to neuroinflammation, damage to synaptic plasticity and altered levels of neurotransmitters that may result in depression. The present study demonstrated that luteolin exerted antidepressant-like effects by improving neuroinflammation in a mouse model of noise-induced depression. Luteolin significantly alleviated noise-induced depression-like behavior. Notably, luteolin treatment not only remarkably ameliorated noise-induced inflammation in the hippocampus and prefrontal cortex, but also increased synapsin. Furthermore, luteolin treatment significantly increased the contents of serum 5-hydroxytryptamine and norepinephrine in noise-induced mice. In sum, luteolin exerts antidepressant effects indepression-like mice caused by noise, which can serve as a potential agent for the treatment of chronic noise-induced depression.


Assuntos
Depressão , Luteolina , Animais , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Hipocampo , Luteolina/farmacologia , Luteolina/uso terapêutico , Camundongos , Doenças Neuroinflamatórias , Plasticidade Neuronal , Neurotransmissores/farmacologia , Norepinefrina/farmacologia , Serotonina , Sinapsinas
5.
Future Med Chem ; 14(9): 647-663, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383482

RESUMO

Background: H2S is the third gas transmitter affecting the growth, reproduction and survival of cancer cells. However, the H2S anticancer and antitumor mechanism still needs to be further studied. Methods: Here, FHS-1 was synthesized utilizing excited-state intramolecular proton transfer to detect H2S in MCF-7 cells, and investigated the effects of varying concentrations NaHS on apoptosis. Results: The study found that FHS-1 detects H2S levels with high selectivity and pH stability and that H2S may regulate apoptosis in MCF-7 cells through the p53/mTOR/STAT3 pathway. Conclusion: Researching the influence of H2S on apoptosis can serve as a theoretical foundation for future research into H2S-related anticancer medicines, and the H2S probe can be used as an effective cancer screening tool.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Apoptose , Corantes Fluorescentes/química , Humanos , Células MCF-7 , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...