Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(16)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38211330

RESUMO

The two-dimensional layered semiconductor MoSi2N4, which has several advantages including high strength, excellent stability, high hole mobility, and high thermal conductivity, was recently successfully synthesized using chemical vapor deposition. Based on first-principles calculations, we investigate the effects of the twist angle and interlayer distance variation on the electronic properties of twisted bilayer MoSi2N4. The flat bands are absent for twisted bilayer MoSi2N4when the twist angleθis reduced to 3.89°. Taking twisted bilayer MoSi2N4withθof 5.09° as an example, we find that flat bands emerge as the interlayer distance decreases. As the interlayer distance can be effectively modulated by hydrostatic pressure, we propose hydrostatic pressure as a knob for tailoring the flat bands in twisted bilayer MoSi2N4. Our findings provide theoretical support for extending the applications of MoSi2N4in strong correlation physics and superconductivity.

2.
Nano Lett ; 22(14): 5841-5848, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35816385

RESUMO

The giant light-matter interaction induced by van Hove singularities (vHSs) of twisted bilayer graphene (tBLG) is responsible for enhanced optical absorption and strong photoresponse. Here, we investigated the evolution of vHSs in tBLG under pressure by using Raman spectroscopy. Pressure not only induces a blue shift of the G/R band but also tunes the intensity of the G/R band. The blue shift of the G/R band is due to the reduction of the in-plane lattice constant, and the variation of the G/R band intensity is due to the vHSs' shift of tBLG. Moreover, the main band in the absorption spectrum of tBLG is attributed to multiple transitions from valence to conduction bands. Because the ratio of R to G band intensity increases under pressure and the origins of R and G bands are different, we claim that pressure enhances intervalley electron scattering. This study paves the way for pressure engineering of vHS and the corresponding photon-electron-phonon interaction in tBLG.

3.
Nat Nanotechnol ; 12(8): 757-762, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28459469

RESUMO

Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest (∼0.2 meV T-1). Here we show greatly enhanced valley spitting in monolayer WSe2, utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magnetoreflectance measurements and corresponds to an effective exchange field of ∼12 T. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing the MEF of a magnetic insulator can induce magnetic order and valley and spin polarization in TMDCs, which may enable valleytronic and quantum-computing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...