Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.644
Filtrar
1.
J Biotechnol ; 389: 86-93, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718874

RESUMO

l-Carnosine (l-Car), an endogenous dipeptide presents in muscle and brain tissues of various vertebrates, has a wide range of application values. The enzymatic preparation of l-Car is a promising synthetic method because it avoids the protection and deprotection steps. In the present study, a dipeptidase gene (CpPepD) from Clostridium perfringens with high l-Car synthetic activity was cloned and characterized. In an effort to improve the performance of this enzyme, we carried out site saturation mutagenesis using CpPepD as the template. By the o-phthalaldehyde (OPA)-derived high throughput screening method, mutant A171S was obtained with 2.2-fold enhanced synthetic activity. The enzymatic properties of CpPepD and mutant A171S were investigated. Under the optimized conditions, 63.94 mM (14.46 g L-1) or 67.02 mM (15.16 g L-1) l-Car was produced at the substrate concentrations of 6 M ß-Ala and 0.2 M l-His using wild-type or mutant A171S enzyme, respectively. Although the mutation enhanced the enzyme activity, the reaction equilibrium was barely affected.

2.
Autophagy ; : 1-18, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38705724

RESUMO

The endoplasmic reticulum (ER) serves as a hub for various cellular processes, and maintaining ER homeostasis is essential for cell function. Reticulophagy is a selective process that removes impaired ER subdomains through autophagy-mediatedlysosomal degradation. While the involvement of ubiquitination in autophagy regulation is well-established, its role in reticulophagy remains unclear. In this study, we screened deubiquitinating enzymes (DUBs) involved in reticulophagy and identified USP20 (ubiquitin specific peptidase 20) as a key regulator of reticulophagy under starvation conditions. USP20 specifically cleaves K48- and K63-linked ubiquitin chains on the reticulophagy receptor RETREG1/FAM134B (reticulophagy regulator 1), thereby stabilizing the substrate and promoting reticulophagy. Remarkably, despite lacking a transmembrane domain, USP20 is recruited to the ER through its interaction with VAPs (VAMP associated proteins). VAPs facilitate the recruitment of early autophagy proteins, including WIPI2 (WD repeat domain, phosphoinositide interacting 2), to specific ER subdomains, where USP20 and RETREG1 are enriched. The recruitment of WIPI2 and other proteins in this process plays a crucial role in facilitating RETREG1-mediated reticulophagy in response to nutrient deprivation. These findings highlight the critical role of USP20 in maintaining ER homeostasis by deubiquitinating and stabilizing RETREG1 at distinct ER subdomains, where USP20 further recruits VAPs and promotes efficient reticulophagy.Abbreviations: ACTB actin beta; ADRB2 adrenoceptor beta 2; AMFR/gp78 autocrine motility factor receptor; ATG autophagy related; ATL3 atlastin GTPase 3; BafA1 bafilomycin A1; BECN1 beclin 1; CALCOCO1 calcium binding and coiled-coil domain 1; CCPG1 cell cycle progression 1; DAPI 4',6-diamidino-2-phenylindole; DTT dithiothreitol; DUB deubiquitinating enzyme; EBSS Earle's Balanced Salt Solution; FFAT two phenylalanines (FF) in an acidic tract; GABARAP GABA type A receptor-associated protein; GFP green fluorescent protein; HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase; IL1B interleukin 1 beta; LIR LC3-interacting region; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; PIK3C3/Vps34 phosphatidylinositol 3-kinase catalytic subunit type 3; RB1CC1/FIP200 RB1 inducible coiled-coil 1; RETREG1/FAM134B reticulophagy regulator 1; RFP red fluorescent protein; RHD reticulon homology domain; RIPK1 receptor interacting serine/threonine kinase 1; RTN3L reticulon 3 long isoform; SEC61B SEC61 translocon subunit beta; SEC62 SEC62 homolog, preprotein translocation factor; SIM super-resolution structured illumination microscopy; SNAI2 snail family transcriptional repressor 2; SQSTM1/p62 sequestosome 1; STING1/MITA stimulator of interferon response cGAMP interactor 1; STX17 syntaxin 17; TEX264 testis expressed 264, ER-phagy receptor; TNF tumor necrosis factor; UB ubiquitin; ULK1 unc-51 like autophagy activating kinase 1; USP20 ubiquitin specific peptidase 20; USP33 ubiquitin specific peptidase 33; VAMP8 vesicle associated membrane protein 8; VAPs VAMP associated proteins; VMP1 vacuole membrane protein 1; WIPI2 WD repeat domain, phosphoinositide interacting 2; ZFYVE1/DFCP1 zinc finger FYVE-type containing 1.

3.
Nat Commun ; 15(1): 3890, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719850

RESUMO

Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.


Assuntos
Proteínas de Bactérias , Septinas , Shigella flexneri , Transdução de Sinais , Ubiquitina , Ubiquitinação , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Septinas/metabolismo , Septinas/genética , Humanos , Ubiquitina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosforilação , Interações Hospedeiro-Patógeno , Células HeLa , Proteínas Culina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Disenteria Bacilar/microbiologia , Disenteria Bacilar/metabolismo
4.
Int J Biol Macromol ; 269(Pt 2): 132144, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729476

RESUMO

Herein, we investigated the synergistic effects of jet milling (JM) and deep eutectic solvent (DES) pretreatment on the fractionation of grapevine lignin and the consequent enhancement of enzymatic hydrolysis. Grapevine, a substantial byproduct of the wine industry, was subjected to JM pretreatment to produce finely powdered particles (median diameter D50 = 98.90), which were then further treated with acidic ChCl-LA and alkaline K2CO3-EG DESs. The results revealed that the combined JM + ChCl-LA pretreatment significantly increased the cellulose preservation under optimal conditions (110 °C, 4 h, and 20 % water content), achieving removal rates of 74.18 % xylan and 66.05 % lignin, respectively. The pretreatment temperature and inhibitor production were reduced, resulting in a remarkable threefold increase in glucose yield compared to untreated samples. Moreover, the structural analysis of the pretreated lignin indicated an enrichment of phenolic units, leading to enhanced antioxidant and antibacterial activities, particularly in the JM pretreated samples. These findings underscore the promising potential of the synergistic JM and DES pretreatment in facilitating the efficient utilization of grapevine lignocellulosic biomass for sustainable biorefinery technologies.

5.
Cardiovasc Diabetol ; 23(1): 154, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702735

RESUMO

BACKGROUND: Insulin resistance (IR) plays an important role in the pathophysiology of cardiovascular disease. Recent studies have shown that diabetes mellitus and impaired lipid metabolism are associated with the severity and prognosis of idiopathic pulmonary arterial hypertension (IPAH). However, the relationship between IR and pulmonary hypertension is poorly understood. This study explored the association between four IR indices and IPAH using data from a multicenter cohort. METHODS: A total of 602 consecutive participants with IPAH were included in this study between January 2015 and December 2022. The metabolic score for IR (METS-IR), triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio, triglyceride and glucose (TyG) index, and triglyceride-glucose-body mass index (TyG-BMI) were used to quantify IR levels in patients with IPAH. The correlation between non-insulin-based IR indices and long-term adverse outcomes was determined using multivariate Cox regression models and restricted cubic splines. RESULTS: During a mean of 3.6 years' follow-up, 214 participants experienced all-cause death or worsening condition. Compared with in low to intermediate-low risk patients, the TG/HDL-C ratio (2.9 ± 1.7 vs. 3.3 ± 2.1, P = 0.003) and METS-IR (34.5 ± 6.7 vs. 36.4 ± 7.5, P < 0.001) were significantly increased in high to intermediate-high risk patients. IR indices correlated with well-validated variables that reflected the severity of IPAH, such as the cardiac index and stroke volume index. Multivariate Cox regression analyses indicated that the TyG-BMI index (hazard ratio [HR] 1.179, 95% confidence interval [CI] 1.020, 1.363 per 1.0-standard deviation [SD] increment, P = 0.026) and METS-IR (HR 1.169, 95% CI 1.016, 1.345 per 1.0-SD increment, P = 0.030) independently predicted adverse outcomes. Addition of the TG/HDL-C ratio and METS-IR significantly improved the reclassification and discrimination ability beyond the European Society of Cardiology (ESC) risk score. CONCLUSIONS: IR is associated with the severity and long-term prognosis of IPAH. TyG-BMI and METS-IR can independently predict clinical worsening events, while METS-IR also provide incremental predictive performance beyond the ESC risk stratification.


Assuntos
Biomarcadores , Glicemia , Resistência à Insulina , Índice de Gravidade de Doença , Triglicerídeos , Adulto , Feminino , Humanos , Masculino , Biomarcadores/sangue , Glicemia/metabolismo , China/epidemiologia , HDL-Colesterol/sangue , Progressão da Doença , Hipertensão Pulmonar Primária Familiar/diagnóstico , Hipertensão Pulmonar Primária Familiar/sangue , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Hipertensão Pulmonar Primária Familiar/mortalidade , Prognóstico , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Triglicerídeos/sangue
6.
Nat Prod Res ; : 1-5, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721687

RESUMO

A new triterpenoid compound 1* (scandine A1) was obtained from 95% ethanol extract of Uncaria laevigata. Meanwhile, eleven described compounds were also isolated for the first time from Uncaria laevigata. Herein, compound 2 exhibited strong diastolic cardio-cerebrovascular activity (EC50BA = 9.22 µM and EC50CA = 14.65 µM), which was not been previously described. Compound 1* also showed certain diastolic cardio-cerebrovasculary activity. Network pharmacology indicated that the diastolic cardio-cerebrovascular activity of compound 2 was most correlated with the Ras signalling pathway. Molecular docking confirmed that it exhibited strong binding activity with target protein (matrix metalloproteinase inhibitor-1). Moreover, compound 2 demonstrated significant potential on cardio-cerebrovascular activity in vitro. Overall, compounds 1* and 2 with good diastolic cardio-cerebrovascular activity were discovered in this work.

7.
J Sep Sci ; 47(9-10): e2300867, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726736

RESUMO

Shengxian decoction, a traditional Chinese medicinal prescription, has been shown to alleviate doxorubicin-induced chronic heart failure. This study established an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method to separate and characterize the complex chemical compositions of Shengxian decoction, and the absorbed compounds in the bio-samples of the cardiotoxicity rats with chronic heart failure after its oral delivery. Note that 116 chemical compounds were identified from Shengxian decoction in vitro, 81 more than previously detected. Based on the three-dimensional data of these compounds, 28 absorbed compounds were confirmed in vivo. Network pharmacology and molecular docking experiments indicated that timosaponin B-II, timosaponin A-III, gitogenin, and 7,8-didehydrocimigenol were recognized as the key effective compounds to exert effects against doxorubicin cardiotoxicity by acting on targets such as caspase 3, cyclin-dependent kinase 1, cyclin-dependent kinase 4, receptor tyrosine-protein kinase erbB-2, and mitogen-activated protein kinase 1 in p53 and phosphatidylinositol 3-kinase-Akt signaling pathways. This study developed the understanding of the composition of Shengxian decoction for the treatment of doxorubicin cardiotoxicity, as well as a feasible strategy to elucidate the effective constituents in traditional Chinese medicines.


Assuntos
Doxorrubicina , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/análise , Animais , Ratos , Cromatografia Líquida de Alta Pressão , Masculino , Espectrometria de Massas , Cardiotoxicidade , Simulação de Acoplamento Molecular , Combinação de Medicamentos
8.
Angew Chem Int Ed Engl ; : e202403824, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727541

RESUMO

Stability is the most pressing challenge hindering the commercialization of perovskite solar cells (PSCs), and previous efforts focused more on enhancing the resistance of PSCs to external stimulus. Here, we found that the indium tin oxide (ITO) will deteriorate the photovoltaic performance of PSCs through positive feedback cycles. Specifically, the perovskite degradation products will cross the electron transport layer  to chemically etch the electrode ITO to generate In3+, which will migrate upwards into the perovskite film. Then, the reaction that corrodes ITO consumes the decomposition products of perovskite and shifts the balance of the perovskite decomposition reaction, further promoting the degradation and thus falling into a positive feedback cycle. Moreover, the In3+ in the perovskite film was found to accumulate at the upper surface, which would lead to n-type doping of perovskite film to form the energy barrier for interface carrier extraction. Subsequently, the chelating molecule ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) was introduced onto ITO to firmly chelate the In3+ and prevent it from migrating upward, thus breaking this internal positive feedback cycle and significantly enhancing the efficiency and stability of PSCs. This work provides new perspectives for understanding the mechanism of photovoltaic performance loss and ionic transport in PSCs.

9.
PLoS Pathog ; 20(5): e1011783, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739652

RESUMO

Legionella pneumophila strains harboring wild-type rpsL such as Lp02rpsLWT cannot replicate in mouse bone marrow-derived macrophages (BMDMs) due to induction of extensive lysosome damage and apoptosis. The bacterial factor directly responsible for inducing such cell death and the host factor involved in initiating the signaling cascade that leads to lysosome damage remain unknown. Similarly, host factors that may alleviate cell death induced by these bacterial strains have not yet been investigated. Using a genome-wide CRISPR/Cas9 screening, we identified Hmg20a and Nol9 as host factors important for restricting strain Lp02rpsLWT in BMDMs. Depletion of Hmg20a protects macrophages from infection-induced lysosomal damage and apoptosis, allowing productive bacterial replication. The restriction imposed by Hmg20a was mediated by repressing the expression of several endo-lysosomal proteins, including the small GTPase Rab7. We found that SUMOylated Rab7 is recruited to the bacterial phagosome via SulF, a Dot/Icm effector that harbors a SUMO-interacting motif (SIM). Moreover, overexpression of Rab7 rescues intracellular growth of strain Lp02rpsLWT in BMDMs. Our results establish that L. pneumophila exploits the lysosomal network for the biogenesis of its phagosome in BMDMs.

10.
Phytomedicine ; 129: 155628, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38663117

RESUMO

BACKGROUND: Postmenopausal osteoporosis (PMOP) is a systemic bone disease characterized by low bone mass and microstructural damage. Morinda Officinalis (MO) contains various components with anti-PMOP activities. Morinda Officinalis-derived extracellular vesicle-like particles (MOEVLPs) are new active components isolated from MO, and no relevant studies have investigated their anti-osteoporosis effect and mechanism. PURPOSE: To investigate the alleviating effect of MOEVLPs on PMOP and the underlying mechanism. METHODS: Differential centrifugation and ultracentrifugation were used to isolate MOEVLPs from MO. Transmission electron microscopy (TEM), flow nano analyzer, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), agarose gel electrophoresis, and thin-layer chromatography were employed to characterize MOEVLPs. PMOP mouse models were utilized to examine the anti-PMOP effect of MOEVLPs. H&E and immunohistochemical staining were used for drug safety and osteogenic effect assessment. Mouse embryo osteoblast precursor cells (MC3T3-E1) were used in vitro experiments. CCK-8 kit, alizarin red staining, proteomic, bioinformatic analyses, and western blot were used to explore the mechanism of MOEVLPs. RESULTS: In this study, MOEVLPs from MO were successfully isolated and characterized. Animal experiments demonstrated that MOEVLPs exhibited specific femur targeting, were non-toxic to the heart, liver, spleen, lung, kidney, and aorta, and possessed anti-PMOP properties. The ability of MOEVLPs to strengthen bone formation was better than that of alendronate. In vitro experiments, results revealed that MOEVLPs did not significantly enhance osteogenic differentiation in MC3T3-E1 cells. Instead, MOEVLPs promoted the proliferation of MC3T3-E1 cells. Proteomic and bioinformatic analyses suggested that the proliferative effect of MOEVLPs was closely associated with the mitogen-activated protein kinase (MAPK) signaling pathway, particularly the altered expression of cAMP response element-binding protein (CREB) and ribosomal S6 kinase 1 (RSK1). Western blot results further confirmed these findings. CONCLUSION: Our studies successfully isolated high-quality MOEVLPs and demonstrated that MOEVLPs can alleviate PMOP by promoting osteoblast proliferation through the MAPK pathway. MOEVLPs have the potential to become a novel and natural anti-PMOP drug.

11.
BMC Pulm Med ; 24(1): 185, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632547

RESUMO

BACKGROUND: Patients with pulmonary arterial hypertension (PAH) exhibit a distinct gut microbiota profile; however, the causal association between gut microbiota, associated metabolites, and PAH remains elusive. We aimed to investigate this causal association and to explore whether dietary patterns play a role in its regulation. METHODS: Summary statistics of gut microbiota, associated metabolites, diet, and PAH were obtained from genome-wide association studies. The inverse variance weighted method was primarily used to measure the causal effect, with sensitivity analyses using the weighted median, weighted mode, simple mode, MR pleiotropy residual sum and outlier (MR-PRESSO), and MR-Egger methods. A reverse Mendelian randomisation analysis was also performed. RESULTS: Alistipes (odds ratio [OR] = 2.269, 95% confidence interval [CI] 1.100-4.679, P = 0.027) and Victivallis (OR = 1.558, 95% CI 1.019-2.380, P = 0.040) were associated with an increased risk of PAH, while Coprobacter (OR = 0.585, 95% CI 0.358-0.956, P = 0.032), Erysipelotrichaceae (UCG003) (OR = 0.494, 95% CI 0.245-0.996, P = 0.049), Lachnospiraceae (UCG008) (OR = 0.596, 95% CI 0.367-0.968, P = 0.036), and Ruminococcaceae (UCG005) (OR = 0.472, 95% CI 0.231-0.962, P = 0.039) protected against PAH. No associations were observed between PAH and gut microbiota-derived metabolites (trimethylamine N-oxide [TMAO] and its precursors betaine, carnitine, and choline), short-chain fatty acids (SCFAs), or diet. Although inverse variance-weighted analysis demonstrated that elevated choline levels were correlated with an increased risk of PAH, the results were not consistent with the sensitivity analysis. Therefore, the association was considered insignificant. Reverse Mendelian randomisation analysis demonstrated that PAH had no causal impact on gut microbiota-derived metabolites but could contribute to increased the levels of Butyricicoccus and Holdemania, while decreasing the levels of Clostridium innocuum, Defluviitaleaceae UCG011, Eisenbergiella, and Ruminiclostridium 5. CONCLUSIONS: Gut microbiota were discovered suggestive evidence of the impacts of genetically predicted abundancy of certain microbial genera on PAH. Results of our study point that the production of SCFAs or TMAO does not mediate this association, which remains to be explained mechanistically.


Assuntos
Microbioma Gastrointestinal , Metilaminas , Hipertensão Arterial Pulmonar , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Hipertensão Pulmonar Primária Familiar , Colina
12.
J Infect Dis ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669226

RESUMO

BACKGROUND: The role of Gasdermin D (GSDMD) in bloodstream infection (BSI) diagnosis is unknown. METHODS: Serum GSDMD levels were measured in BSI patients. Endothelial cells and PBMCs were isolated, infected with bacteria/fungi, and intracellular/extracellular GSDMD concentrations were measured. An animal model was established to investigate the association between serum GSDMD levels and BSI incidence/progression. RESULTS: ROC curve analysis indicated that GSDMD could be a potential early diagnostic biomarker for BSI (AUC = 0.9885). Combining GSDMD with procalcitonin (PCT) improved the differential diagnosis of Gram-positive and Gram-negative bacteria (AUC = 0.6699, 66.15% specificity), and early diagnosis of Gram-positive bacteria (98.46% sensitivity), while PCT was not significantly elevated. The combined GSDMD and G-test had higher sensitivity (AUC = 0.7174) for differential diagnosis of bacterial and fungal infections, and early detection of fungal infections (98.44% sensitivity). In vitro and in vivo experiments confirmed that GSDMD levels increased significantly within 2 hours, peaked at 16 hours, and exhibited a time-dependent upward trend. CONCLUSIONS: Serum GSDMD, alone or combined with other biomarkers, has potential for early diagnosis and differential diagnosis of BSI caused by various pathogens. This finding offers a new strategy for early detection and treatment of BSI.

13.
Angew Chem Int Ed Engl ; : e202402139, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563765

RESUMO

The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.

14.
Brain Res Bull ; 211: 110947, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614409

RESUMO

Trigeminal neuralgia (TN) is a highly debilitating facial pain condition. Magnetic resonance imaging (MRI) is the main method for generating insights into the central mechanisms of TN pain in humans. Studies have found both structural and functional abnormalities in various brain structures in TN patients as compared with healthy controls. Whereas studies have also examined aberrations in brain networks in TN, no studies have to date investigated causal interactions in these brain networks and related these causal interactions to the levels of TN pain. We recorded fMRI data from 39 TN patients who either rested comfortably in the scanner during the resting state session or tracked their pain levels during the pain tracking session. Applying Granger causality to analyze the data and requiring consistent findings across the two scanning sessions, we found 5 causal interactions, including: (1) Thalamus → dACC, (2) Caudate → Inferior temporal gyrus, (3) Precentral gyrus → Inferior temporal gyrus, (4) Supramarginal gyrus → Inferior temporal gyrus, and (5) Bankssts → Inferior temporal gyrus, that were consistently associated with the levels of pain experienced by the patients. Utilizing these 5 causal interactions as predictor variables and the pain score as the predicted variable in a linear multiple regression model, we found that in both pain tracking and resting state sessions, the model was able to explain ∼36 % of the variance in pain levels, and importantly, the model trained on the 5 causal interaction values from one session was able to predict pain levels using the 5 causal interaction values from the other session, thereby cross-validating the models. These results, obtained by applying novel analytical methods to neuroimaging data, provide important insights into the pathophysiology of TN and could inform future studies aimed at developing innovative therapies for treating TN.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/fisiopatologia , Neuralgia do Trigêmeo/diagnóstico por imagem , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Idoso , Adulto , Mapeamento Encefálico/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Dor/fisiopatologia , Dor/diagnóstico por imagem , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
15.
Emerg Microbes Infect ; 13(1): 2332670, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38646911

RESUMO

This study aimed to provide data for the clinical features of invasive pneumococcal disease (IPD) and the molecular characteristics of Streptococcus pneumoniae isolates from paediatric patients in China. We conducted a multi-centre prospective study for IPD in 19 hospitals across China from January 2019 to December 2021. Data of demographic characteristics, risk factors for IPD, death, and disability was collected and analysed. Serotypes, antibiotic susceptibility, and multi-locus sequence typing (MLST) of pneumococcal isolates were also detected. A total of 478 IPD cases and 355 pneumococcal isolates were enrolled. Among the patients, 260 were male, and the median age was 35 months (interquartile range, 12-46 months). Septicaemia (37.7%), meningitis (32.4%), and pneumonia (27.8%) were common disease types, and 46 (9.6%) patients died from IPD. Thirty-four serotypes were detected, 19F (24.2%), 14 (17.7%), 23F (14.9%), 6B (10.4%) and 19A (9.6%) were common serotypes. Pneumococcal isolates were highly resistant to macrolides (98.3%), tetracycline (94.1%), and trimethoprim/sulfamethoxazole (70.7%). Non-sensitive rates of penicillin were 6.2% and 83.3% in non-meningitis and meningitis isolates. 19F-ST271, 19A-ST320 and 14-ST876 showed high resistance to antibiotics. This multi-centre study reports the clinical features of IPD and demonstrates serotype distribution and antibiotic resistance of pneumococcal isolates in Chinese children. There exists the potential to reduce IPD by improved uptake of pneumococcal vaccination, and continued surveillance is warranted.


Assuntos
Antibacterianos , Tipagem de Sequências Multilocus , Infecções Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação , Masculino , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/mortalidade , Feminino , Pré-Escolar , China/epidemiologia , Lactente , Antibacterianos/farmacologia , Estudos Prospectivos , Testes de Sensibilidade Microbiana , Hospitais/estatística & dados numéricos , Criança , Fatores de Risco , População do Leste Asiático
16.
J Environ Sci (China) ; 143: 164-175, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644014

RESUMO

Utilizing CO2 for bio-succinic acid production is an attractive approach to achieve carbon capture and recycling (CCR) with simultaneous production of a useful platform chemical. Actinobacillus succinogenes and Basfia succiniciproducens were selected and investigated as microbial catalysts. Firstly, the type and concentration of inorganic carbon concentration and glucose concentration were evaluated. 6 g C/L MgCO3 and 24 g C/L glucose were found to be the optimal basic operational conditions, with succinic acid production and carbon yield of over 30 g/L and over 40%, respectively. Then, for maximum gaseous CO2 fixation, carbonate was replaced with CO2 at different ratios. The "less carbonate more CO2" condition of the inorganic carbon source was set as carbonate: CO2 = 1:9 (based on the mass of carbon). This condition presented the highest availability of CO2 by well-balanced chemical reaction equilibrium and phase equilibrium, showing the best performance with regarding CO2 fixation (about 15 mg C/(L·hr)), with suppressed lactic acid accumulation. According to key enzymes analysis, the ratio of phosphoenolpyruvate carboxykinase to lactic dehydrogenase was enhanced at high ratios of gaseous CO2, which could promote glucose conversion through the succinic acid path. To further increase gaseous CO2 fixation and succinic acid production and selectivity, stepwise CO2 addition was evaluated. 50%-65% increase in inorganic carbon utilization was obtained coupled with 20%-30% increase in succinic acid selectivity. This was due to the promotion of the succinic acid branch of the glucose metabolism, while suppressing the pyruvate branch, along with the inhibition on the conversion from glucose to lactic acid.


Assuntos
Dióxido de Carbono , Ácido Succínico , Dióxido de Carbono/metabolismo , Ácido Succínico/metabolismo , Actinobacillus/metabolismo , Glucose/metabolismo
18.
Chem Biol Interact ; 395: 110994, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582339

RESUMO

Exposure to environmental pollutants, including nanomaterials, has a significant impact on tumor progression. The increased demand for black phosphorus nanosheets (BPNSs), driven by their exceptional properties, raises concerns about potential environmental contamination. Assessing their toxicity on tumor growth is essential. Herein, we employed a range of biological techniques, including cytotoxicity measurement, bioinformatics tools, proteomics, target gene overexpression, Western blot analysis, and apoptosis detection, to investigate the toxicity of BPNSs across A549, HepG-2, MCF-7, and Caco-2 cell lines. Our results demonstrated that BPNSs downregulated the expression of ADIPOQ and its associated downstream pathways, such as AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (Nrf2), and other unidentified pathways. These downregulated pathways ultimately led to mitochondria-dependent apoptosis. Notably, the specific downstream pathways involved varied depending on the type of tumors. These insightful findings not only confirm the consistent inhibitory effects of BPNSs across different tumor cells, but also elucidate the cytotoxicity mechanisms of BPNSs in different tumors, providing valuable information for their safe application and health risk assessment.

19.
ACS Appl Mater Interfaces ; 16(15): 18843-18854, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38586920

RESUMO

Sulfide solid-state electrolytes have garnered considerable attention owing to their notable ionic conductivity and mechanical properties. However, achieving an electrolyte characterized by both high ionic conductivity and a stable interface between the electrode and electrolyte remains challenging, impeding its widespread application. In this work, we present a novel sulfide solid-state electrolyte, Li3.04P0.96Zn0.04S3.92F0.08, prepared through a solid-phase reaction, and explore its usage in all-solid-state lithium sulfur batteries (ASSLSBs). The findings reveal that the Zn, F co-doped solid-state electrolyte exhibits an ionic conductivity of 1.23 × 10-3 S cm-1 and a low activation energy (Ea) of 9.8 kJ mol-1 at room temperature, illustrating the aliovalent co-doping's facilitation of Li-ion migration. Furthermore, benefiting from the formation of a LiF-rich interfacial layer between the electrolyte and the Li metal anode, the Li/Li3.04P0.96Zn0.04S3.92F0.08/Li symmetrical cell exhibits critical current densities (CCDs) of up to 1 mA cm-2 and maintains excellent cycling stability. Finally, the assembled ASSLSBs exhibit an initial discharge capacity of 1295.7 mAh g-1 at a rate of 0.05 C and at room temperature. The cell maintains a capacity retention of 70.5% for more than 600 cycles at a high rate of 2 C, representing a substantial improvement compared to the cell with Li3PS4. This work provides a new idea for the design of solid-state electrolytes and ASSLSBs.

20.
Int J Ophthalmol ; 17(4): 700-706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638249

RESUMO

AIM: To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs. METHODS: The clinical data of 155 patients were retrospectively collected in this study, and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed. RESULTS: Among the 155 patients (age from 12 to 87 years old, with an average age of 57, 99 males and 56 females) with eye infections (160 eyes: 74 in the left eye, 76 in the right eye and 5 in both eyes, all of which were exogenous), 71 (45.81%) strains were gram-positive bacteria, 23 (14.84%) strains were gram-negative bacteria and 61 (39.35%) strains were fungi. Gram-positive bacteria were highly resistant to penicillin and erythromycin (78.87% and 46.48% respectively), but least resistant to vancomycin at 0. Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole (100% and 95.65% respectively), but least resistant to meropenem at 0. Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences (P<0.05) in the resistance of both to cefoxitin, cotrimoxazole, levofloxacin, cefuroxime, ceftriaxone and ceftazidime, and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria. The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva, cornea, aqueous humor or vitreous body and other eye parts. Besides, Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections. CONCLUSION: Gram-positive bacteria are the dominant bacteria in eye infections, followed by gram-negative bacteria and fungi. Considering the resistance of gram-negative bacteria to multiple drugs, monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...