Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896029

RESUMO

The auxin/indole-3-acetic acid (Aux/IAA) and auxin response factor (ARF) genes are two crucial gene families in the plant auxin signaling pathway. Nonetheless, there is limited knowledge regarding the Aux/IAA and ARF gene families in Populus simonii. In this study, we first identified 33 putative PsIAAs and 35 PsARFs in the Populus simonii genome. Analysis of chromosomal location showed that the PsIAAs and PsARFs were distributed unevenly across 17 chromosomes, with the greatest abundance observed on chromosomes 2. Furthermore, based on the homology of PsIAAs and PsARFs, two phylogenetic trees were constructed, classifying 33 PsIAAs and 35 PsARFs into three subgroups each. Five pairs of PsIAA genes were identified as the outcome of tandem duplication, but no tandem repeat gene pairs were found in the PsARF family. The expression profiling of PsIAAs and PsARFs revealed that several genes exhibited upregulation in different tissues and under various stress conditions, indicating their potential key roles in plant development and stress responses. The variance in expression patterns of specific PsIAAs and PsARFs was corroborated through RT-qPCR analysis. Most importantly, we instituted that the PsIAA7 gene, functioning as a central hub, exhibits interactions with numerous Aux/IAA and ARF proteins. Furthermore, subcellular localization findings indicate that PsIAA7 functions as a protein localized within the nucleus. To conclude, the in-depth analysis provided in this study will contribute significantly to advancing our knowledge of the roles played by PsIAA and PsARF families in both the development of P. simonii tissue and its responses to stress. The insights gained will serve as a valuable asset for further inquiries into the biological functions of these gene families.

2.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768411

RESUMO

The C-Repeat Binding Factor (CBF) gene family has been identified and characterized in multiple plant species, and it plays a crucial role in responding to low temperatures. Presently, only a few studies on tree species demonstrate the mechanisms and potential functions of CBFs associated with cold resistance, while our study is a novel report on the multi-aspect differences of CBFs among three tree species, compared to previous studies. In this study, genome-wide identification and analysis of the CBF gene family in Acer truncatum, Acer pseudosieboldianum, and Acer yangbiense were performed. The results revealed that 16 CBF genes (five ApseCBFs, four AcyanCBFs, and seven AtruCBFs) were unevenly distributed across the chromosomes, and most CBF genes were mapped on chromosome 2 (Chr2) and chromosome 11 (Chr11). The analysis of phylogenetic relationships, gene structure, and conserved motif showed that 16 CBF genes could be clustered into three subgroups; they all contained Motif 1 and Motif 5, and most of them only spanned one exon. The cis-acting elements analysis showed that some CBF genes might be involved in hormone and abiotic stress responsiveness. In addition, CBF genes exhibited tissue expression specificity. High expressions of ApseCBF1, ApseCBF3, AtruCBF1, AtruCBF4, AtruCBF6, AtruCBF7, and ApseCBF3, ApseCBF4, ApseCBF5 were detected on exposure to low temperature for 3 h and 24 h. Low expressions of AtruCBF2, AtruCBF6, AtruCBF7 were detected under cold stress for 24 h, and AtruCBF3 and AtruCBF5 were always down-regulated under cold conditions. Taken together, comprehensive analysis will enhance our understanding of the potential functions of the CBF genes on cold resistance, thereby providing a reference for the introduction of Acer species in our country.


Assuntos
Acer , Resposta ao Choque Frio , Resposta ao Choque Frio/genética , Acer/genética , Filogenia , Temperatura Baixa , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499002

RESUMO

Low temperature is an important environmental factor that affects the growth and development of trees and leads to the introduction of failure in the genetic improvement of trees. Acer pseudosieboldianum is a tree species that is well-known for its bright red autumn leaf color. These trees are widely used in landscaping in northeast China. However, due to their poor cold resistance, introduced A. pseudosieboldianum trees suffer severe freezing injury in many introduced environments. To elucidate the physiological indicators and molecular mechanisms associated with freezing damage, we analyzed the physiological indicators and transcriptome of A. pseudosieboldianum, using kits and RNA-Seq technology. The mechanism of A. pseudosieboldianum in response to freezing stress is an important scientific question. In this study, we used the shoots of four-year-old A. pseudosieboldianum twig seedlings, and the physiological index and the transcriptome of A. pseudosieboldianum under low temperature stress were investigated. The results showed that more than 20,000 genes were detected in A. pseudosieboldianum under low temperature (4 °C) and freezing temperatures (-10 °C, -20 °C, -30 °C, and -40 °C). There were 2505, 6021, 5125, and 3191 differential genes (DEGs) between -10 °C, -20°C, -30°C, -40 °C, and CK (4 °C), respectively. Among these differential genes, 48 genes are involved in the MAPK pathway and 533 genes are involved in the glucose metabolism pathway. In addition, the important transcription factors (MYB, AP2/ERF, and WRKY) involved in freezing stress were activated under different degrees of freezing stress. A total of 10 sets of physiological indicators of A. pseudosieboldianum were examined, including the activities of five enzymes and the accumulation of five hormones. All of the physiological indicators except SOD and GSH-Px reached their maximum values at -30 °C. The enzyme activity of SOD was highest at -10 °C, and that of GSH-Px was highest at -20 °C. Our study is the first to provide a more comprehensive understanding of the differential genes (DEGs) involved in A. pseudosieboldianum under freezing stress at different temperatures at the transcriptome level. These results may help to clarify the molecular mechanism of cold tolerance of A. pseudosieboldianum and provide new insights and candidate genes for the genetic improvement of the freezing tolerance of A. pseudosieboldianum.


Assuntos
Acer , Regulação da Expressão Gênica de Plantas , Acer/genética , Perfilação da Expressão Gênica , Transcriptoma , Congelamento
4.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36362393

RESUMO

Korean pine (Pinus koraiensis Sieb. et Zucc.), as the main tree species in northeast China, has important economic and ecological values. Currently, supplementary light has been widely used in plant cultivation projects. However, the studies about different supplementary light sources on the growth and development of Korean pine are few. In this study, the one with no supplementary light was used as the control, and two kinds of light sources were set up: light-emitting diode (LED) and incandescent lamp, to supplement light treatment of Korean pine. The spectrum and intensity of these two light sources were different. The results showed that the growth and physiological-biochemical indicators were significantly different under different supplementary light treatments. The biomass of supplementary light treatment was significantly lower than the control. Compared with the control, IAA and GA were lower, and JA, ABA, ZT, and ETH were higher under supplementary light conditions. Photosynthetic parameters in supplementary light conditions were significantly lower than the control. Supplemental light induces chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid accumulation. From RNA-seq data, differentially expressed genes (DEGs) were observed in all the comparison groups, and there were 487 common DEGs. The expression levels of DEGs encoding transcription factors were also changed. According to GO and KEGG analysis, the plant hormone signal transduction, circadian rhythm-plant, and flavonoid biosynthesis pathways were the most enriched. These results provided a theoretical basis for the response of Korean pine to different supplementary lights.


Assuntos
Pinus , Pinus/genética , Transcriptoma , Clorofila A , Perfilação da Expressão Gênica , Árvores/genética , China
5.
Front Bioeng Biotechnol ; 10: 911701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733524

RESUMO

Populus alba × Populus glandulosa (84K poplar) is model material with excellent genetic engineering resource and ornamental value. In our study, AmRosea1 (Antirrhinum majus) was overexpressed in 84K poplar, and the transgenic 84K (AM) poplar with high content of anthocyanin exhibited red pigmentation leaves. The transcriptome analysis between wild type (WT) and AM showed that 170 differentially expressed genes (DEGs) (86 up-regulated and 84 down-regulated) were found, and some DEGs were involved in flavone and flavonol biosynthesis, flavonoid biosynthesis and anthocyanin biosynthesis. The metabolome analysis showed that 13 anthocyanins-related differentially accumulated metabolites (DAMs) were detected in AM. The correlation analysis between DEGs and DAMs were performed, and the results revealed that 18 DEGs, including 11 MYB genes, two BZ1 genes, one FG2 gene, one ANS gene, and three IF7MAT genes, were negatively or positively correlated with 13 DAMs. The phylogenetic analysis demonstrated that there was high homology between AmRosea1 and PagMYB113, and MYB113 co-expressed with BZ1, ANS and DFR directly. Our results elucidated the molecular mechanism of plant color change mediated by anthocyanin biosynthesis pathway, which laid the foundation for the development and utilization of colorful woody plant.

6.
Front Plant Sci ; 13: 795631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222462

RESUMO

Pinus koraiensis, Pinus sibirica, and Pinus pumila are the major five-needle pines in northeast China, with substantial economic and ecological values. The phenotypic variation, environmental adaptability and evolutionary relationships of these three five-needle pines remain largely undecided. It is therefore important to study their genetic differentiation and evolutionary history. To obtain more genetic information, the needle transcriptomes of the three five-needle pines were sequenced and assembled. To explore the relationship of sequence information and adaptation to a high mountain environment, data on needle morphological traits [needle length (NL), needle width (NW), needle thickness (NT), and fascicle width (FW)] and 19 climatic variables describing the patterns and intensity of temperature and precipitation at six natural populations were recorded. Geographic coordinates of altitude, latitude, and longitude were also obtained. The needle morphological data was combined with transcriptome information, location, and climate data, for a comparative analysis of the three five-needle pines. We found significant differences for needle traits among the populations of the three five-needle pine species. Transcriptome analysis showed that the phenotypic variation and environmental adaptation of the needles of P. koraiensis, P. sibirica, and P. pumila were related to photosynthesis, respiration, and metabolites. Analysis of orthologs from 11 Pinus species indicated a closer genetic relationship between P. koraiensis and P. sibirica compared to P. pumila. Our study lays a foundation for genetic improvement of these five-needle pines and provides insights into the adaptation and evolution of Pinus species.

7.
J Xray Sci Technol ; 29(4): 635-643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935131

RESUMO

PURPOSE: This study aims to evaluate the planned dose of stereotactic body radiation therapy (SBRT) for treating early peripheral non-small cell lung cancer (NSCLC) using the non-coplanar radiation from Cyberknife and Varian linac. Moreover, this study investigates whether Cyberknife and Varian linac are qualified for non-coplanar radiation SBRT for treating early peripheral NSCLC, and which one is better for protecting organs at risk (OARs). METHODS: Retrospective analysis was performed based on the Cyberknife radiation treatment plans (RTPs) and Varian Eclipse RTPs of 10 patients diagnosed with early peripheral NSCLC. The dose distributions in the target and OARs were compared between the RTPs of Cyberknife and Varian Eclipse using Mim medical imaging software. RESULTS: For PTV, no significant difference in D98 and D95 between the Cyberknife and Eclipse was observed (t = -0.35, -1.67, P > 0.05). The homogeneity indexes (HIs) of Cyberknife plans are higher (t = 71.86, P < 0.05) than those of Eclipse plans. The V10, V15, V20, V25, V30 and Dmean of the lung with NSCLC and the V20 of the whole lung for Cyberknife were less than those for Eclipse (t = -4.73, -5.62, -7.75, -6.38, -6.89, -3.14, -7.09, respectively, P < 0.05). Cyberknife plans have smaller spinal cord Dmax, trachea Dmax, heart Dmax, chest wall Dmax (t = -2.49, -2.57, -3.71, -3.56, respectively, P < 0.05) and esophagus Dmax (t = -1.95, P > 0.05) than Varian Eclipse plans. CONCLUSION: To fulfill SBRT by non-coplanar radiation, Cyberknife is recommended for the institutions equipped with Cyberknife, while Varian linac can be applied for the institutions that have not adopted Cyberknife in clinical radiotherapy yet.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
8.
Appl Microbiol Biotechnol ; 100(8): 3611-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26758299

RESUMO

The biosynthetic pathway for hyaluronic acid (HA) has been proposed; however, a thorough genetic and functional analysis is required to further elucidate the roles of genes involved in HA production. Previously, we developed a markerless gene-deletion system for Streptococcus zooepidemicus and confirmed that hasA is essential for HA synthesis. Here, we constructed a comprehensive set of deletion mutants and investigated the roles of ten additional predicted genes in the HA synthetic pathway. Phenotypic assays revealed that all ten genes play a role in cell growth and/or HA synthesis. As expected, the deletion of hasA or hasB abolished HA production with little effect on growth, while the deletion of genes that are also required for peptidoglycan biosynthesis (hasE, glmM, and glmS) significantly reduced cell growth and HA production. Either of the glmU homologues (hasD and gcaD) was sufficient for optimal growth and the mucoid phenotype, while no double mutant could be isolated. Of the two UDP-glucose pyrophosphorylase (UGPase) paralogues, the operon-encoded hasC1 was responsible for 65 % of the activity, while hasC2 was responsible for the remaining 35 %. The deletion of hasC1 had no effect on cell growth and caused only a moderate decrease in the UDP-glucose level and HA production. The deletion of both hasC1 and hasC2 resulted in a severe growth defect and negligible UDP-glucose accumulation, HA production, and pyrophosphorylase activity. Of the two phosphoglucomutase paralogues, pgm1 and pgm2, the former is responsible for around 10 % of activity, while the latter is responsible for 90 %. The deletion of pgm1 showed no apparent effect on HA synthesis and growth, while the deletion of pgm2 resulted in the abolishment of HA synthesis and a significantly slower growth. These results should guide the metabolic engineering of S. zooepidemicus to improve HA productivity and quality.


Assuntos
Proteínas de Bactérias/genética , Ácido Hialurônico/biossíntese , Streptococcus equi/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Óperon , Streptococcus equi/crescimento & desenvolvimento , Streptococcus equi/metabolismo
9.
Sci Rep ; 4: 6732, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25339247

RESUMO

Despite the important role of MAPKs in signal transduction, their functions in the cellulase hyper-producing filamentous fungus Hypocrea jecorina haven't been studied except for the Hog1-like Tmk3. In this work, we constructed and explored the features of H. jecorina Δtmk2 to identify the role of this Slt2-homologous Tmk2. It is suggested from the results that Tmk2 is involved in cell wall integrity, sporulation and cellulase production. Although bearing similar roles in cell wall integrity maintenance, Tmk2 and Tmk3 appear to also have distinct functions: Tmk3 participates in high osmolarity resistance while Tmk2 does not; Tmk2 participates in sporulation but not Tmk3; Tmk3 is involved in promoting cellulase production while Tmk2 is involved in repressing cellulase formation. These studies provide the first insight into the function of Tmk2 in H. jecorina and contribute to understanding the signal transduction processes leading to the regulation of cellulase production in this important cellulase hyper-producer.


Assuntos
Celulase/biossíntese , Hypocrea/enzimologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Parede Celular/enzimologia , Parede Celular/metabolismo , Fermentação , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Transdução de Sinais/genética , Esporos Fúngicos/metabolismo
10.
Fungal Genet Biol ; 61: 15-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24035805

RESUMO

The protein hyper-secreting filamentous fungi impact their surrounding environments by secreting cellulases and digesting plant cell wall via microbe-plant interspecies interaction. This process is of paramount importance in biofuel production from the renewable lignocellulosic biomass, because cellulase production is the key factor in cost determination. Despite the importance of protein secretion, p24 protein, a key factor in eukaryotic protein maturation and secretion, was never investigated in filamentous fungi. The erp genes encoding p24γ homologues were identified in Trichoderma reesei and Penicillium decumbens. The roles of Erp and their participated cellular pathways were investigated via disruption of erp, revealing significant differences: sporulation was hampered in T. reesei Δerp but not in P. decumbens Δerp; in both species Erp maintains membrane integrity; Erp is likely involved in hyphae polarity maintenance in T. reesei. Protein- and transcription-level investigations of Erp participation in cellulase production revealed distinct regulatory mechanisms. In T. reesei, cellulase encoding genes were repressed under secretion stress. In contrast, activation of the same genes under the same stress was identified in P. decumbens. These observations revealed a novel cellulase gene regulation mechanism, clearly suggested the different physiological roles of Erp, and further demonstrated the different physiology of T. reesei and P. decumbens, despite above 75% sequence identity between the proteins and the close evolutionary relationship between the two species.


Assuntos
Celulases/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Penicillium/genética , Penicillium/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Fungos/genética , Fungos/metabolismo , Deleção de Genes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Penicillium/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Esporos Fúngicos/crescimento & desenvolvimento , Trichoderma/crescimento & desenvolvimento
11.
PLoS One ; 8(8): e72189, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991059

RESUMO

The mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a ß-1,3-glucan synthase, decreased chitin content, 'budded' hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest that T. reesei is evolved to favor solid state growth, bringing up the proposal that the submerged condition normally used during investigations on fungal physiology might be misleading.


Assuntos
Parede Celular/enzimologia , Celulase/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Trichoderma/enzimologia , Sequência de Aminoácidos , Vias Biossintéticas/genética , Parede Celular/genética , Parede Celular/metabolismo , Celulase/genética , Quitina/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Proteínas Fúngicas/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicerol/metabolismo , Proteínas Quinases Ativadas por Mitógeno/classificação , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Mutação , Concentração Osmolar , Filogenia , Tolerância ao Sal/genética , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Trealose/biossíntese , Trichoderma/genética , Trichoderma/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...