Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 76: 103342, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39265498

RESUMO

BACKGROUND: Disruption of the blood-brain barrier (BBB) is a major contributor to hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) following intravenous thrombolysis (IVT). However, the clinical therapies aimed at BBB protection after IVT remain limited. METHODS: One hundred patients with AIS who underwent IVT were enrolled (42 with HT and 58 without HT 24 h after IVT). Based on the cytokine chip, the serum levels of several AIS-related proteins, including LCN2, ferritin, matrix metalloproteinase-3, vascular endothelial-derived growth factor, and X-linked inhibitor of apoptosis, were detected upon admission, and their associations with HT were analyzed. After finding that LCN2 was related to HT in patients with IVT, we clarified whether the modulation of LCN2 influenced BBB dysfunction and HT after thrombolysis and investigated the potential mechanism. RESULTS: In patients with AIS following IVT, logistic regression analysis showed that baseline serum LCN2 (p = 0.023) and ferritin (p = 0.046) levels were independently associated with HT. A positive correlation between serum LCN2 and ferritin levels was identified in patients with HT. In experimental studies, recombinant LCN2 (rLCN2) significantly aggravated BBB dysfunction and HT in the thromboembolic stroke rats after thrombolysis, whereas LCN2 inhibition by ZINC006440089 exerted opposite effects. Further mechanistic studies showed that, LCN2 promoted endothelial cell ferroptosis, accompanied by the induction of high mobility group box 1 (HMGB1) and the inhibition of nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins. Ferroptosis inhibitor ferrostatin-1 (fer-1) significantly restricted the LCN2-mediated BBB disruption. Transfection of LCN2 and HMGB1 siRNA inhibited the endothelial cell ferroptosis, and this effects was reversed by Nrf2 siRNA. CONCLUSION: LCN2 aggravated BBB disruption after thrombolysis by promoting endothelial cell ferroptosis via regulating the HMGB1/Nrf2/HO-1 pathway, this may provide a promising therapeutic target for the prevention of HT after IVT.

2.
Angew Chem Int Ed Engl ; : e202416170, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235148

RESUMO

Solid polymer electrolytes (SPEs) are crucial in the development of lithium metal batteries. Recently, metal-organic frameworks (MOFs) with open metal sites (OMSs) have shown promise as solid fillers to improve the performance of SPEs. However, the number of OMS-containing MOFs is quite limited, comprising less than 5% of the total MOFs. When considering yield, cost, and processability, the commonly used OMS-containing MOFs are no more than 10 types, causing great limitations. Herein, we reported a simple and universal methodology that converted OMS-free MOFs to OMS-rich quasi-MOFs for developing high-performance SPEs, and explored the underlying mechanism. The "OMS-polymer" and "OMS-ion" interactions were investigated in detail to elucidate the role of quasi-MOFs on battery performance. It was found that quasi-MOFs, functioning as ion sieves, can effectively regulate ion migration, thus promoting uniform Li deposition and enabling an ultra-stable interface. As a result, the Li symmetric cell stably ran over 3000 h at 0.3 mA cm-2, while the full cell retained 85% of its initial capacity after 1500 cycles at 1.0 C. Finally, universal testing was performed using other MOFs, confirming the generalizability and effectiveness of our design concept.

3.
BMC Nephrol ; 25(1): 289, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227817

RESUMO

PURPOSE: The purpose of this study was to investigate the correlation between podocyte related biomarker cofilin-1 and renal function, and explore the value of cofilin-1 in predicting the risk of renal adverse prognosis in IgA nephropathy (IgAN). METHODS: Patients with primary IgAN diagnosed by initial renal biopsy performed in our hospital from January 2019 to February 2022 were included. This study was a prospective cohort study. All IgAN patients were detected the expression of cofilin-1 and other related biomarkers (RhoA, NGAL) in urine by enzyme-linked immunosorbent assay (ELISA) and follow-up at least 6 months. We also collected baseline clinicopathologial data of IgAN. The decreased renal function group was defined as baseline eGFR < 60 ml/min/1.73m2. Logistic and Cox regression model were used to analyze the correlation among cofilin-1 and renal prognosis. RESULTS: 133 IgAN patients were included, with a male-to-female ratio of 1.25:1 and an age of 37.67 ± 13.78 years, as well as an average of eGFR was 71.63 (40.42,109.33) ml/min/1.73m2. 56 patients (42.1%) had decreased renal function at baseline, with the average of eGFR was 34.07 (16.72, 49.21) ml/min/1.73 m2. 12 of which developed to renal adverse prognosis. The average of follow-up time was 22.035 ± 8.992 months. The multivariate regression analysis showed that increased urinary cofilin-1 was an independent risk factor associated with baseline renal function decline and renal adverse prognosis in IgAN patients (P < 0.05). ROC curves showed great efficacy of urinary cofilin-1 levels in diagnosing baseline renal function decline and predicting renal adverse prognosis (the area under the ROC curve was 0.708 and 0.803). CONCLUSION: Cofilin-1 as a novel biomarker of podocyte lesion is closely related to renal function decline in IgAN. Cofilin-1 has certain clinical value in predicting the risk of renal adverse prognosis. Podocyte fusion affects the renal prognosis of IgAN.


Assuntos
Cofilina 1 , Glomerulonefrite por IGA , Humanos , Glomerulonefrite por IGA/urina , Glomerulonefrite por IGA/patologia , Cofilina 1/urina , Masculino , Feminino , Adulto , Prognóstico , Estudos Prospectivos , Taxa de Filtração Glomerular , Pessoa de Meia-Idade , Biomarcadores/urina
4.
Arch Insect Biochem Physiol ; 115(4): e22113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628056

RESUMO

The efficiency of RNA interference (RNAi) has always limited the research on the phenotype innovation of Lepidoptera insects. Previous studies have found that double-stranded RNA-degrading enzyme (dsRNase) is an important factor in RNAi efficiency, but there have been no relevant reports in butterflies (Papilionoidea). Papilio xuthus is one of the important models in butterflies with an extensive experimental application value. To explore the effect of dsRNase in the RNAi efficiency on butterflies, six dsRNase genes (PxdsRNase 1-6) were identified in P. xuthus genome, and their dsRNA-degrading activities were subsequently detected by ex vivo assays. The result shows that the dsRNA-degrading ability of gut content (<1 h) was higher than hemolymph content (>12 h). We then investigated the expression patterns of these PxdsRNase genes during different tissues and developmental stages, and related RNAi experiments were carried out. Our results show that different PxdsRNase genes had different expression levels at different developmental stages and tissues. The expression of PxdsRNase2, PxdsRNase3, and PxdsRNase6 were upregulated significantly through dsGFP injection, and PxdsRNase genes can be silenced effectively by injecting their corresponding dsRNA. RNAi-of-RNAi studies with PxEbony, which acts as a reporter gene, observed that silencing PxdsRNase genes can increase RNAi efficiency significantly. These results confirm that silencing dsRNase genes can improve RNAi efficiency in P. xuthus significantly, providing a reference for the functional study of insects such as butterflies with low RNAi efficiency.


Assuntos
Borboletas , Animais , Borboletas/genética , Interferência de RNA , RNA de Cadeia Dupla , Insetos/genética , Inativação Gênica
5.
World J Orthop ; 15(4): 363-378, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38680671

RESUMO

BACKGROUND: Regular physical activity during childhood and adolescence is beneficial to bone development, as evidenced by the ability to increase bone density and peak bone mass by promoting bone formation. AIM: To investigate the effects of exercise on bone formation in growing mice and to investigate the underlying mechanisms. METHODS: 20 growing mice were randomly divided into two groups: Con group (control group, n = 10) and Ex group (treadmill exercise group, n = 10). Hematoxylin-eosin staining, immunohistochemistry, and micro-CT scanning were used to assess the bone formation-related indexes of the mouse femur. Bioinformatics analysis was used to find potential miRNAs targets of long non-coding RNA H19 (lncRNA H19). RT-qPCR and Western Blot were used to confirm potential miRNA target genes of lncRNA H19 and the role of lncRNA H19 in promoting osteogenic differentiation. RESULTS: Compared with the Con group, the expression of bone morphogenetic protein 2 was also significantly increased. The micro-CT results showed that 8 wk moderate-intensity treadmill exercise significantly increased bone mineral density, bone volume fraction, and the number of trabeculae, and decreased trabecular segregation in the femur of mice. Inhibition of lncRNA H19 significantly upregulated the expression of miR-149 and suppressed the expression of markers of osteogenic differentiation. In addition, knockdown of lncRNA H19 significantly downregulated the expression of autophagy markers, which is consistent with the results of autophagy-related protein changes detected in mouse femurs by immunofluorescence. CONCLUSION: Appropriate treadmill exercise can effectively stimulate bone formation and promote the increase of bone density and bone volume in growing mice, thus enhancing the peak bone mass of mice. The lncRNA H19/miR-149 axis plays an important regulatory role in osteogenic differentiation.

6.
Angew Chem Int Ed Engl ; 63(28): e202400144, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38624087

RESUMO

Li-rich antiperovskite (LiRAP) hydroxyhalides are emerging as attractive solid electrolyte (SEs) for all-solid-state Li metal batteries (ASSLMBs) due to their low melting point, low cost, and ease of scaling-up. The incorporation of rotational polyanions can reduce the activation energy and thus improve the Li ion conductivity of SEs. Herein, we propose a ternary rotational polyanion coupling strategy to fasten the Li ion conduction in tetrafluoroborate (BF4 -) ion doped LiRAP Li2OHCl. Assisted by first-principles calculation, powder X-ray diffraction, solid-state magnetic resonance and electrochemical impedance spectra, it is confirmed that Li ion transport in BF4 - ion doped Li2OHCl is strongly associated with the rotational coupling among OH-, BF4 - and Li2-O-H octahedrons, which enhances the Li ion conductivity for more than 1.8 times with the activation energy lowering 0.03 eV. This work provides a new perspective to design high-performance superionic conductors with multi-polyanions.

7.
Environ Toxicol ; 39(6): 3389-3399, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38445457

RESUMO

Breast cancer stands as the predominant malignancy and primary cause of cancer-related mortality among females globally. Approximately 25% of breast cancers exhibit HER2 overexpression, imparting a more aggressive tumor phenotype and correlating with poor prognoses. Patients with metastatic breast cancer receiving HER2 tyrosine kinase inhibitors (HER2 TKIs), such as Lapatinib, develop acquired resistance within a year, posing a critical challenge in managing this disease. Here, we explore the potential of Artemisia argyi, a Chinese herbal medicine known for its anti-cancer properties, in mitigating HER2 TKI resistance in breast cancer. Analysis of the Cancer Genome Atlas (TCGA) revealed diminished expression of transmembrane serine protease 2 (TMPRSS2), a subfamily of membrane proteolytic enzymes, in breast cancer patients, correlating with unfavorable outcomes. Intriguingly, lapatinib-responsive patients exhibited higher TMPRSS2 expression. Our study unveiled that the compounds from Artemisia argyi, eriodictyol, and umbelliferone could inhibit the growth of lapatinib-resistant HER2-positive breast cancer cells. Mechanistically, they suppressed HER2 kinase activation by enhancing TMPRSS2 activity. Our findings propose TMPRSS2 as a critical determinant in lapatinib sensitivity, and Artemisia argyi emerges as a potential agent to overcome lapatinib via activating TMPRSS2 in HER2-positive breast cancer. This study not only unravels the molecular mechanisms driving cell death in HER2-positive breast cancer cells induced by Artemisia argyi but also lays the groundwork for developing novel inhibitors to enhance therapy outcomes.


Assuntos
Artemisia , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Lapatinib , Extratos Vegetais , Receptor ErbB-2 , Serina Endopeptidases , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Artemisia/química , Feminino , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
8.
Heliyon ; 10(3): e24538, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314303

RESUMO

Leptospirosis is a zoonosis that is related to potential respiratory, renal, neurological, and cardiovascular failure. At present, antibiotics are the recommended treatment, but due to the underlying cause of the disease, they may induce the Jarisch-Herxheimer reaction (JHR) within 24 hours. At the same time, we speculate that JHR may aggravate the natural course of leptospirosis. Considering that there are few available reports on this event, we will share a case of pulmonary hemorrhagic leptospirosis, where antibiotic treatment is suspected to have triggered the JHR. This report is expected to improve clinical attention to the relationship between leptospirosis and JHR.

9.
Zool Res ; 45(1): 189-200, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199973

RESUMO

Monitoring the prevalence of antimicrobial resistance genes (ARGs) is vital for addressing the global crisis of antibiotic-resistant bacterial infections. Despite its importance, the characterization of ARGs and microbiome structures, as well as the identification of indicators for routine ARG monitoring in pig farms, are still lacking, particularly concerning variations in antimicrobial exposure in different countries or regions. Here, metagenomics and random forest machine learning were used to elucidate the ARG profiles, microbiome structures, and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe. Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs ( P<0.05). ANT(6)-Ib, APH(3')-IIIa, and tet(40) were identified as shared core ARGs between the two pig populations. Furthermore, the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions. Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs, respectively. Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100% and 98.7%, respectively. Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy ( r=0.72-0.88). Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs. The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Humanos , Animais , Suínos , Antibacterianos/farmacologia , Esterco , Farmacorresistência Bacteriana/genética
10.
Small ; 20(9): e2306187, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857586

RESUMO

Low Coulombic efficiency (CE) and safety issues are huge problems that hinder the practical application of Li metal anodes. Constructing Li host structures decorated with functional species can restrain the growth of Li dendrites and alleviate the great volume change. Here, a 3D porous carbonaceous skeleton modified with rich lithiophilic groups (Zn, ZnO, and Zn(CN)2 ) is synthesized as a Li host via one-step carbonization of a triazole-containing metal-organic framework. The nano lithiophilic groups serve as preferred sites for Li nucleation and growth, regulating a uniform Li+ flux and uniform current density distribution. In addition, the 3D porous network functions as a Li reservoir that provides rich internal space to store Li, thus alleviating the volumetric expansion during Li plating/stripping process. Thanks to these component and structural merits, an ultra-low overpotential for Li deposition is achieved, together with high CE of over 99.5% for more than 500 cycles at 1 mA cm-2 and 1 mAh cm-2 in half cells. The symmetric cells exhibit a prolonged cycling of 900 h at 1 mA cm-2 . The full cells by coupling Zn/ZnO/Zn(CN)2 @C-Li anode with LiFePO4 cathode deliver a high capacity retention of 94.3% after 200 cycles at 1 C.

11.
Integr Med Res ; 12(4): 101004, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38033651

RESUMO

Background: Advanced pancreatic cancer (APC) is a fatal disease with limited treatment options. This study aims to evaluate the effectiveness and safety of different Chinese herbal injections (CHIs) as adjuvants for radiotherapy (RT) in APC and compare their treatment potentials using network meta-analysis. Methods: We systematically searched three English and four Chinese databases for randomized controlled trials (RCTs) from inception to July 25, 2023. The primary outcome was the objective response rate (ORR). Secondary outcomes included Karnofsky performance status (KPS) score, overall survival (OS), and adverse events (AEs). The treatment potentials of different CHIs were ranked using the surface under the cumulative ranking curve (SUCRA). The Cochrane RoB 2 tool and CINeMA were used for quality assessment and evidence grading. Results: Eighteen RCTs involving 1199 patients were included. Five CHIs were evaluated. Compound Kushen injection (CKI) combined with RT significantly improved ORR compared to RT alone (RR 1.49, 95 % CrI 1.21-1.86). Kanglaite (KLT) plus RT (RR 1.58, 95 % CrI 1.20-2.16) and CKI plus RT (RR 1.49, 95 % CrI 1.16-1.95) were associated with improved KPS score compared to radiation monotherapy, with KLT+RT being the highest rank (SUCRA 72.28 %). Regarding AEs, CKI plus RT was the most favorable in reducing the incidence of leukopenia (SUCRA 90.37 %) and nausea/vomiting (SUCRA 85.79 %). Conclusions: CKI may be the optimal choice of CHIs to combine with RT for APC as it may improve clinical response, quality of life, and reduce AEs. High-quality trials are necessary to establish a robust body of evidence. Protocol registration: PROSPERO, CRD42023396828.

12.
Nat Commun ; 14(1): 6807, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884502

RESUMO

Solid-state electrolytes with high ionic conductivities are crucial for the development of all-solid-state lithium batteries, and there is a strong correlation between the ionic conductivities and underlying lattice structures of solid-state electrolytes. Here, we report a lattice manipulation method of replacing [Li2OH]+ clusters with potassium ions in antiperovskite solid-state electrolyte (Li2OH)0.99K0.01Cl, which leads to a remarkable increase in ionic conductivity (4.5 × 10‒3 mS cm‒1, 25 °C). Mechanistic analysis indicates that the lattice manipulation method leads to the stabilization of the cubic phase and lattice contraction for the antiperovskite, and causes significant changes in Li-ion transport trajectories and migration barriers. Also, the Li||LiFePO4 all-solid-state battery (excess Li and loading of 1.78 mg cm‒2 for LiFePO4) employing (Li2OH)0.99K0.01Cl electrolyte delivers a specific capacity of 116.4 mAh g‒1 at the 150th cycle with a capacity retention of 96.1% at 80 mA g‒1 and 120 °C, which indicates potential application prospects of antiperovskite electrolyte in all-solid-state lithium batteries.

13.
Redox Biol ; 66: 102852, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598463

RESUMO

The protective effects of remote ischemic conditioning (RIC) on acute ischemic stroke have been reported. However, the protective mechanisms of RIC have not been fully elucidated. This study aimed to investigate whether RIC could reduce oxidative stress and inflammatory responses in middle cerebral artery occlusion (MCAO)-reperfusion mice via the nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. C57BL/6 mice were subjected to MCAO and underwent RIC twice daily at 1, 3, and 7 days after MCAO. ML385 was used to specifically inhibit Nrf2 in MCAO mice. Neurological deficit scores, infarct volume, and hematoxylin-eosin (HE) staining were assessed. Oxidative stress levels were assessed based on total antioxidant capacity (TAC), malonaldehyde (MDA), superoxide dismutase (SOD), and glutathione/glutathione disulfide (GSH/GSSG). mRNA levels were detected using real-time polymerase chain reaction (PCR), and protein levels were detected using western blotting and enzyme-linked immunosorbent assay (ELISA). Protein localization was investigated using immunofluorescence staining. RIC significantly reduced infarct volume and improved neurological function and histological changes after MCAO. RIC significantly increased TAC, SOD, and GSH/GSSG levels and decreased MDA levels. RIC significantly increased Nrf2 and HO-1 mRNA levels and decreased Keap1, NLRP3, and Cleaved Caspase-1 mRNA levels. RIC significantly increased Nrf2, HO-1, and NQO1 protein expression and decreased Keap1, NLRP3, Cleaved Caspase-1, Cleaved IL-1ß, IL-6, and TNF-α protein expression. RIC promoted the activation and translocation of Nrf2 into the nucleus. The protective effects of RIC were abolished by ML385 treatment. In conclusion, our findings suggest that RIC alleviates oxidative stress and inflammatory responses via the Nrf2/HO-1 pathway, which in turn improves neurobehavioral function. RIC may provide novel therapeutic options for acute ischemic stroke.


Assuntos
AVC Isquêmico , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Infarto da Artéria Cerebral Média , Heme Oxigenase-1/genética , Dissulfeto de Glutationa , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Antioxidantes , Inflamação , Caspase 1
14.
Front Vet Sci ; 10: 1175848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138926

RESUMO

With the rapid development of poultry industry and the highly intensive production management, there are an increasing number of stress factors in poultry production. Excessive stress will affect their growth and development, immune function, and induce immunosuppression, susceptibility to a variety of diseases, and even death. In recent years, increasing interest has focused on natural components extracted from plants, among which plant polysaccharides have been highlighted because of their various biological activities. Plant polysaccharides are natural immunomodulators that can promote the growth of immune organs, activate immune cells and the complement system, and release cytokines. As a green feed additive, plant polysaccharides can not only relieve stress and enhance the immunity and disease resistance of poultry, but also regulate the balance of intestinal microorganisms and effectively alleviate all kinds of stress faced by poultry. This paper reviews the immunomodulatory effects and molecular mechanisms of different plant polysaccharides (Atractylodes macrocephala Koidz polysaccharide, Astragalus polysaccharides, Taishan Pinus massoniana pollen polysaccharide, and alfalfa polysaccharide) in poultry. Current research results reveal that plant polysaccharides have potential uses as therapeutic agents for poultry immune abnormalities and related diseases.

15.
Exp Neurol ; 364: 114386, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36934866

RESUMO

The brain is one of the important reservoir sites for HIV persistent/latent infection that often leads to HIV-associated neurocognitive disorders (HAND). However, HIV dynamics in the brain is an understudied area and little is known about mechanisms underlying the development and progression of HAND. This issue is mainly due to the lack of suitable in vitro models that can recapitulate the cellular and molecular complexity of the human brain. Hence, there is an urgent need for such models to study HIV neuropathogenesis and to develop therapeutics for HAND. The emergence of three-dimensional (3D) brain organoids generated from induced pluripotent stem cells (iPSCs) has now provided a clinically relevant in vitro model to study HIV brain infection and neuropathogenesis. Recently, there have been a noticeable number of publications that demonstrate the feasibility and advantages of this model for studies of neurobiology and brain disorders as well as HIV infection. Here, we describe the development of iPSC-derived human microglia-containing brain organoids, including advantages/challenges, and focus on their applicability for modeling HIV brain infection.


Assuntos
Infecções por HIV , Células-Tronco Pluripotentes Induzidas , Humanos , Encéfalo/patologia , Organoides
16.
Neurobiol Dis ; 179: 106044, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804285

RESUMO

Stroke is the second leading cause of death worldwide; however, the treatment choices available to neurologists are limited in clinical practice. Lipocalin 2 (LCN2) is a secreted protein, belonging to the lipocalin superfamily, with multiple biological functions in mediating innate immune response, inflammatory response, iron-homeostasis, cell migration and differentiation, energy metabolism, and other processes in the body. LCN2 is expressed at low levels in the brain under normal physiological conditions, but its expression is significantly up-regulated in multiple acute stimulations and chronic pathologies. An up-regulation of LCN2 has been found in the blood/cerebrospinal fluid of patients with ischemic/hemorrhagic stroke, and could serve as a potential biomarker for the prediction of the severity of acute stroke. LCN2 activates reactive astrocytes and microglia, promotes neutrophil infiltration, amplifies post-stroke inflammation, promotes blood-brain barrier disruption, white matter injury, and neuronal death. Moreover, LCN2 is involved in brain injury induced by thrombin and erythrocyte lysates, as well as microvascular thrombosis after hemorrhage. In this paper, we review the role of LCN2 in the pathological processes of ischemic stroke; intracerebral hemorrhage; subarachnoid hemorrhage; and stroke-related brain diseases, such as vascular dementia and post-stroke depression, and their underlying mechanisms. We hope that this review will help elucidate the value of LCN2 as a therapeutic target in stroke.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Humanos , Astrócitos/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Lipocalina-2/metabolismo , Lipocalinas/metabolismo , Acidente Vascular Cerebral/patologia
17.
Front Chem ; 10: 1013965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262340

RESUMO

Composite polymer electrolytes (CPEs) show significant advantages in developing solid-state batteries due to their high flexibility and easy processability. In CPEs, solid fillers play a considerable effect on electrochemical performances. Recently, metal-organic frameworks (MOFs) are emerging as new solid fillers and show great promise to regulate ion migration. Herein, by using a Co-based MOF, a high-performance CPE is initially prepared and studied. Benefiting from the sufficient interactions and pore confinement from MOF, the obtained CPE shows both high ionic conductivity and a high Li+ transference number (0.41). The MOF-incorporated CPE then enables a uniform Li deposition and stable interfacial condition. Accordingly, the as-assembled solid batteries demonstrate a high reversible capacity and good cycling performance. This work verifies the practicability of MOFs as solid fillers to produce advanced CPEs, presenting their promising prospect for practical application.

18.
Huan Jing Ke Xue ; 43(9): 4867-4877, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096627

RESUMO

As an important source of greenhouse gases, the changes in greenhouse gas concentrations of aquaculture ponds are not only the basis for accurate quantification of greenhouse gases emissions but are also important for identifying their influencing factors. The spatial and temporal variation characteristics of CH4, CO2, and N2O concentrations and the influencing factors in a typical small aquaculture pond in the Yangtze River Delta were analyzed based on the headspace equilibrium-gas chromatograph method. Except in spring, the concentrations of CH4, and N2O appeared high at noon or afternoon and were influenced by water temperature. Impacted by water temperature and aquatic plant photosynthesis, the concentrations of CO2 were high in the morning when photosynthesis was weak. The concentrations of CH4 and CO2 were the highest in autumn and the lowest in winter. The mean concentrations of CH4 in autumn and winter were 176.34 nmol·L-1 and 32.75 nmol·L-1, respectively, which were mainly affected by air temperature, water temperature, and dissolved oxygen. The average CO2 concentrations in autumn and winter were 134.37 µmol·L-1 and 23.10 µmol·L-1, respectively, and were mainly affected by aquatic vegetation photosynthesis and pH. N2O concentration was the highest in summer and the lowest in winter, with mean values of 97.05 nmol·L-1 and 19.41 nmol·L-1, respectively, which were mainly affected by air temperature and water temperature. In terms of the vertical spatial variations of the three greenhouse gases, the concentration of CH4decreased with water depth in summer, and the concentration differences between the surface layer and the bottom and middle layers were 71.28 nmol·L-1 and 42.80 nmol·L-1, respectively. The concentration of CH4 increased with water depth in autumn, and the concentration difference between the bottom layer and surface layer was 163.94 nmol·L-1. The CO2 concentration increased with water depth in summer and autumn. The concentration differences between the bottom and surface concentrations were 18.69 µmol·L-1 and 29.90 µmol·L-1, respectively. N2O concentration showed no obvious change in the vertical direction. For the horizontal variations, the concentrations of CH4, CO2, and N2O in the feeding area in summer and in chicken manure in spring were approximately 1.34-1.98 times and 1.95-2.42 times those in other areas, respectively, and the concentrations of N2O and CO2 in spring and summer were approximately 1.13-1.26 times and 1.39-1.74 times those in other areas.


Assuntos
Gases de Efeito Estufa , Metano , Aquicultura , Dióxido de Carbono/análise , Metano/análise , Óxido Nitroso/análise , Lagoas , Água
19.
Arch Insect Biochem Physiol ; 111(2): e21952, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35909310

RESUMO

Papilio machaon was assigned as the type species for all butterflies by Linnaeus and P. bianor is a congener but exhibits a great difference in morphology (especially larva and adult color pattern) and larval host plants from P. machaon. Thus, they are the ideal models to investigate genetic mechanisms underlying morphology and plasticity between congeners. The reference genomes of both species were dissected in our previous studies, but little is known about their regulatory genome and the epigenetic regulation of gene expression throughout developmental stages. Here, we profiled the chromatin accessibility and gene expression of three developmental stages (the 4th instar larva [L4], the 5th instar larva [L5], and pupa [P]) using transposase accessible chromatin sequencing (ATAC-seq) and RNA-seq. Results showed that many accessible chromatin peaks were identified at three developmental stages (peak number, P. machaon: 44,977 [L4], 36,919 [L5], 47,147 [P]; P. bianor: 20,341 [L4], 44,668 [L5], 62,249 [P]). Moreover, the number of differentially accessible peaks and differentially expressed genes between larval stages of each butterfly species are significantly fewer than that between larval and pupal stages, suggesting a higher similarity within larvae and a significant difference between larvae and pupae. This study added the annotated information of chromatin accessibility genome-wide of the two papilionid species and will promote the investigation of gene regulation in butterfly evolution.


Assuntos
Borboletas , Animais , Borboletas/genética , Cromatina/genética , Epigênese Genética , Larva/genética , Pupa/genética
20.
Zool Res ; 43(4): 585-596, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35726584

RESUMO

Heterosis is a common phenomenon in plants and animals with diverse underlying mechanisms. Here, we applied two widely used silkworm hybrid systems and performed multi-omics analysis to identify possible intrinsic associations between different hybrid strategies and epigenetic mechanisms with silkworm heterosis. We found significant differences in the silk gland transcriptomic landscape between the two systems, including differentially expressed genes and expression patterns in the hybrid offspring compared to their parents. In the quaternary hybrid system, hybrid vigor was primarily due to up-regulated genes and the parent-dominant up-regulated expression pattern, involving multiple transport processes, cellular nitrogen compound catabolism, glucose metabolism, and tricarboxylic acid cycle. In the binary system, hybrid vigor was mainly due to the down-regulated genes and transgressively down-regulated expression pattern, mainly involving basic nitrogen synthesis metabolism and body function. We also demonstrated that DNA methylation may affect hybrid vigor by regulating the expression of several heterosis-related genes. Thus, this study revealed two alternative mechanisms that may contribute to silkworm heterosis, both of which facilitate the efficient utilization of energy and nitrogen for silk production.


Assuntos
Bombyx , Vigor Híbrido , Animais , Bombyx/genética , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica de Plantas , Vigor Híbrido/genética , Nitrogênio , Seda/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA