Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA Ophthalmol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662345

RESUMO

Importance: Treatments are needed to slow progression of or reduce incidence of myopia. Objective: To evaluate the efficacy and safety of daily 650-nm low-level red light (LLRL) for myopia treatment. Design, Setting, and Participants: Single-masked, randomized clinical trial at 1 site in China. Baseline measurements were completed from August to September 2021. Participants were children aged 6 to 12 years with spherical equivalent error (SER) of -6 diopters (D) to 3 D. Data were analyzed from March to July 2023. Interventions: Irradiation daily with 650-nm LLRL for 3 minutes twice daily 4 or more hours apart or no intervention. Main Outcomes and Measures: Primary outcomes were changes in cycloplegia SER and axial length (AL) at 6- and 12-month follow-up visits. Safety was assessed on masked fundus photograph evaluations. Results: A total of 336 children were randomly allocated into the LLRL group or control group in a 1:1 ratio. The control group contained 86 female patients (51.2%), and the treatment group contained 90 female patients (53.6%). The mean (SD) age, SER, and AL were 9.0 (1.9) years, -1.3 (1.5) D, and 23.8 (1.0) mm for all patients. A total of 161 (95.8%) in the LLRL group and 159 (94.6%) in the control group returned for the 6-month follow-up. A total of 157 (93.5%) in the LLRL group and 152 (90.5%) in the control group returned for the 12-month follow-up. Mean (SD) changes in SER were 0.15 (0.16) D and -0.26 (0.21) D for the LLRL group and the control group, respectively (difference, -0.41 D; 95% CI, -0.48 to -0.34 D; P < .001), at 6 months and 0.24 (0.27) D and -0.65 (0.33) D for the LLRL group and the control group, respectively (difference, -0.89 D; 95% CI, -0.95 to -0.83 D; P < .001), at 12 months. Mean (SD) changes in AL were -0.06 (0.08) mm and 0.13 (0.12) mm for the LLRL group and control group, respectively (difference, 0.19 mm; 95% CI, 0.16 to 0.22 mm; P < .001), at 6 months and -0.11 (0.10) mm and 0.26 (0.16) mm for the LLRL group and control group, respectively (difference, 0.37 mm; 95% CI, 0.34 to 0.40 mm; P < .001). Masked fundus photograph review did not identify retinal changes in either group. Conclusions and relevance: These findings suggest daily use of 650-nm LLRL for 1 year can slow progression of SER and AL without safety concerns identified. Confirmation of these findings at independent sites seems warranted, as well as determining whether these effects can be sustained with or without continued treatment and whether LLRL has any effect on pathological myopia. Trial Registration: ChiCTR2200058963.

2.
Bioresour Technol ; 394: 130301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211714

RESUMO

The purpose of this study is to design and investigate two coupling processes for acid-catalyzed hydrolysis of corncob, achieving the simultaneous preparation of biomass-based furfural and levulinic acid (LA). Meanwhile, high concentration and yield of LA were obtained through a situ feeding strategy of pretreated furfural residue with high solids loading (20%, w/v). In Scenario A, 2-methyltetrahydrofuran was selected as the solvent for the LA extraction process compared with the neutralization process in Scenario B. Techno-economic assessment results show that Scenario A is technically feasible and cost-competitive, with an internal rate of return of 21.92%, a net present value of 121 million US dollars, a carbon efficiency of 72%, an environmental factor of 4.38, and a process mass intensity of 32.19. This study will provide new insights for fully utilizing lignocellulosic biomass to prepare renewable energy resources, comprehensively evaluating the economic feasibility, and promoting green and low-carbon development.


Assuntos
Furaldeído , Zea mays , Furaldeído/química , Zea mays/química , Biomassa , Ácidos Levulínicos , Carbono
3.
Adv Sci (Weinh) ; 11(4): e2307134, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032135

RESUMO

Sustainability and adaptability in structural design of the organic cathodes present promises for applications in alkali metal ion batteries. Nevertheless, a formidable challenge lies in their high solubility in organic electrolytes, particularly for small molecular materials, impeding cycling stability and high capacity. This study focuses on the design and synthesis of organic small molecules, the isomers of (E)-5,5'-difluoro-[3,3'-biindolinylidene]-2,2'-dione (EFID) and 3,9-difluoro-6,12-dihydrodibenzo [c, h][2,6]naphthyridine-5,11-dione (FBND). While EFID, characterized by a less π-conjugated structure, exhibits subpar cycling stability in lithium-ion batteries (LIBs), intriguingly, another isomer, FBND, demonstrates exceptional capacity and cycling stability in LIBs. FBND delivers a remarkable capacity of 175 mAh g-1 at a current density of 0.05 A g-1 and maintains excellent cycling stability over 2000 cycles, retaining 90% of its initial capacity. Furthermore, an in-depth examination of redox reactions and storage mechanisms of FBND are conducted. The potential of FBND is also explored as an anode in lithium-ion batteries (LIBs) and as a cathode in sodium-ion batteries (SIBs). The FBND framework, featuring extended π-conjugated molecules with an imide structure compared to EFID, proves to be an excellent material template to develop advanced organic small molecular cathode materials for sustainable batteries.

4.
Chemosphere ; 339: 139639, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37495052

RESUMO

As the development of urban population led to the increase of domestic water consumption, consequently the generation of surplus sludge (SS) produced increasingly during sewage treatment processes. In order to enhance the SS resource utilization efficiency, an electricity-assisted anaerobic digestion (EAAD) system was employed to examine the alterations in the digestion broth and the characteristics of gas production. Additionally, the response of applied voltages on the distribution of archaeal community near various electrodes within the sludge was explored. The results revealed that the application of high voltages exceeding 3.0 V hindered the CH4 production but stimulated the CO2 generation. Subsequently, both CH4 and CO2 production were impeded by the applied voltages. Furthermore, the increased voltages significantly decreased the abundance of Methanomicrobia, Methanosaeta, and Methanosarcina, which were crucial determinants of CH4 content in biogas. Notably, the excessively high voltages intensities caused the AD process to halt and even inactivate the microbial flora. Interestingly, the distribution characteristics of archaeal community were influenced not only by the voltages intensity but also exhibited variations between the anode and cathode regions. Moreover, as the applied voltage intensified, the discrepancy of responses between the cathode and anode regions became more pronounced, offering novel theoretical and technical foundations for the advancement of electricity-assisted with AD technology.


Assuntos
Archaea , Esgotos , Dióxido de Carbono , Anaerobiose , Metano , Biocombustíveis , Digestão , Reatores Biológicos
5.
Chem Sci ; 14(22): 6079-6086, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37293661

RESUMO

The nitrogen doping of graphene leads to graphene heterojunctions with a tunable bandgap, suitable for electronic, electrochemical, and sensing applications. However, the microscopic nature and charge transport properties of atomic-level nitrogen-doped graphene are still unknown, mainly due to the multiple doping sites with topological diversities. In this work, we fabricated atomically well-defined N-doped graphene heterojunctions and investigated the cross-plane transport through these heterojunctions to reveal the effects of doping on their electronic properties. We found that a different doping number of nitrogen atoms leads to a conductance difference of up to ∼288%, and the conductance of graphene heterojunctions with nitrogen-doping at different positions in the conjugated framework can also lead to a conductance difference of ∼170%. Combined ultraviolet photoelectron spectroscopy measurements and theoretical calculations reveal that the insertion of nitrogen atoms into the conjugation framework significantly stabilizes the frontier molecular orbitals, leading to a change in the relative positions of the HOMO and LUMO to the Fermi level of the electrodes. Our work provides a unique insight into the role of nitrogen doping in the charge transport through graphene heterojunctions and materials at the single atomic level.

6.
Int Ophthalmol ; 43(10): 3549-3558, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37318667

RESUMO

PURPOSE: To evaluate whether the six-month repeated irradiation of 650 nm low-level red light (LLRL) decreases the risk of myopia onset in children. METHODS: This was a single-masked, randomized controlled trial. A total of 112 children (aged 6-12 years) were enrolled and randomized to the treatment group or control group in a 1:1 ratio. The cycloplegic spherical equivalent error (SER) of children at baseline was -0.5 diopter (D) to 3D. Children in the treatment group were irradiated with the 650 nm LLRL for 6 min daily. No intervention was given to the control. The primary outcomes are myopia incidence, change in cycloplegic SER, and change in axial length (AL). RESULTS: For the treatment group and control group, the six-month myopia incidence rates were 1.8% (95% confidence interval, CI: 0.2-4.9%) and 12.5% (95% CI: 5.5-21.9%), respectively. The difference was significant (p = 0.028). The median changes in AL for the treatment group and control group were -0.02 (interquartile range, IQR: -0.12 to 0.06) mm, and 0.09 (IQR: 0-0.18) mm, respectively. The difference was significant (p < 0.001). The median changes in cycloplegic SER for the treatment group and control group were 0 (IQR: 0-0.25) D, and -0.125 (IQR: -0.375 to 0) D, respectively. The difference was significant (p < 0.001). There was no adverse event. CONCLUSION: The repeated irradiation of 650 nm LLRL may have a strong effect for myopia prevention in children, without risk of adverse events. TRIAL REGISTRATION: this trial is retrospectively registered in the Chinese Clinical Trial Registry ( http://www.chictr.org.cn/ ), the registration number is ChiCTR2200058963.


Assuntos
Midriáticos , Miopia , Humanos , Criança , Miopia/epidemiologia , Refração Ocular , Luz , Incidência , Progressão da Doença
7.
Nano Lett ; 23(13): 6027-6034, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37387588

RESUMO

Electrodes play an essential role in controlling electrode-molecule coupling. However, conventional metal electrodes require linkers to anchor the molecule. Van der Waals interaction offers a versatile strategy to connect the electrode and molecule without anchor groups. Except for graphene, the potential of other materials as electrodes to fabricate van der Waals molecular junctions remains unexplored. Herein, we utilize semimetallic transition metal dichalcogenides (TMDCs) 1T'-WTe2 as electrodes to fabricate WTe2/metalated tetraphenylporphyrin (M-TPP)/WTe2 junctions via van der Waals interaction. Compared with chemically bonded Au/M-TPP/Au junctions, the conductance of these M-TPP van der Waals molecular junctions is enhanced by ∼736%. More importantly, WTe2/M-TPP/WTe2 junctions exhibit the tunable conductance from 10-3.29 to 10-4.44 G0 (1.15 orders of magnitude) via single-atom control, recording the widest tunable range of conductance for M-TPP molecular junctions. Our work demonstrates the potential of two-dimensional TMDCs for constructing highly tunable and conductive molecular devices.

8.
ACS Appl Mater Interfaces ; 15(20): 24354-24365, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37167087

RESUMO

Antimony (Sb) has been considered a promising anode for sodium-ion batteries (SIBs) owing to its high theoretical capacity (660 mA h g-1) and low redox voltage (0.2-0.9 V vs Na+/Na). However, the capacity degradation caused by the volumetric variation during battery discharge/charge hinders the practical application. Herein, guided by the DFT calculation, Sb/Fe2S3 was fabricated by annealing Fe and Sb2S3 mixed powder. Next, Sb/Fe2S3 was blended with 15 wt % graphite by ball milling, yielding nano-Sb/Fe2S3 anchored on an exfoliated graphite composite (denoted as Sb/Fe2S3-15%). When applied as an anode of SIBs, Sb/Fe2S3-15% delivered reversible capacities of 565, 542, 467, 366, 285, and 236 mA h g-1 at current rates of 1, 2, 4, 6, 8, and 10 A g-1, respectively, surpassing most of the Sb-based anodes. The co-existence of highly conductive Fe2S3 and Sb minimizes the polarization of the anode. Our experiments proved that the Sb and Fe2S3 phases were reversible during discharge/charge cycling, and the exfoliated graphite can accelerate the Na+ diffusion and e- conduction. The proposed synthesis method of this work can also be applicable to synthesize various antimony/transition metal sulfide heterostructures (Sb/M1-xS), which may be applied in a series of fields.

9.
Chem Commun (Camb) ; 59(40): 6036-6039, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37099315

RESUMO

Nano-polycrystalline Sn2S3/Sn3S4/FeS/Fe7S8 sulfides anchored on graphene were synthesized via annealing SnS2 and Fe followed by homogeneously combining them with exfoliated graphite. When applied as an anode for a sodium-ion battery, the reversible capacity reached 863 mA h g-1 at 100 mA g-1. This facial materials synthesis method may be applied in various fields.

10.
Sci Adv ; 9(6): eadf0425, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753541

RESUMO

Single-molecule electronics offer a unique strategy for the miniaturization of electronic devices. However, the existing experiments are limited to the conventional molecular junctions, where a molecule anchors to the electrode pair with linkers. With such a rod-like configuration, the minimum size of the device is defined by the length of the molecule. Here, by incorporating a single molecule with two single-layer graphene electrodes, we fabricated layer-by-layer single-molecule heterojunctions called single-molecule two-dimensional van der Waals heterojunctions (M-2D-vdWHs), of which the sizes are defined by the thickness of the molecule. We controlled the conformation of the M-2D-vdWHs and the cross-plane charge transport through them with the applied electric field and established that they can serve as reversible switches. Our results demonstrate that the M-2D-vdWHs, as stacked from single-layer 2D materials and a single molecule, can respond to electric field stimulus, which promises a diverse class of single-molecule devices with unprecedented size.

11.
Mater Horiz ; 10(5): 1769-1779, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36825539

RESUMO

Metamaterials, from concept to application level, is currently a high-trending topic. Due to the strict requirements of the simultaneous reasonable structural design and stability of materials, the construction of a high-performance metamaterial for extreme environments is still difficult. Here, combining metamaterial design with materials optimization, we propose a completely different strategy and synthesize a type of monomeric ceramic meta-atom to construct metamaterials. Based on a geometric design with multiple degrees of freedom and dielectric properties, hybrid anapole modes with impedance matching can be produced, experimentally inducing nearly perfect absorption with high temperature stability (high tolerable temperature of approximately 1300 °C, with almost zero temperature drift) in microwave/millimeter-wave bands. We surpass the oxidation temperature limitation of 800 °C in conventional plasmonic absorbers, and provide an unprecedented direction for the further development of integrated high-performance metamaterial wireless sensors responding to extreme environmental scenarios, which will also lead to a new direction of specific ceramic research toward device physics.

12.
Small ; 19(16): e2206740, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36670093

RESUMO

All-solid-state sodium metal batteries paired with solid polymer electrolytes (SPEs) are considered a promising candidate for high energy-density, low-cost, and high-safety energy storage systems. However, the low ionic conductivity and inferior interfacial stability with Na metal anode of SPEs severely hinder their practical applications. Herein, an anion-trapping 3D fiber network enhanced polymer electrolyte (ATFPE) is developed by infusing poly(ethylene oxide) matrix into an electrostatic spun fiber framework loading with an orderly arranged metal-organic framework (MOF). The 3D continuous channel provides a fast Na+ transport path leading to high ionic conductivity, and simultaneously the rich coordinated unsaturated cation sites exposed on MOF can effectively trap anions, thus regulating Na+ concentration distribution for constructing stable electrolyte/Na anode interface. Based on such advantages, the ATFPE exhibits high ionic conductivity and considerable Na+ transference number, as well as enhanced interfacial stability. Consequently, Na/Na symmetric cells using this ATFPE possess cyclability over 600 h at 0.1 mA cm-2 without discernable Na dendrites. Cooperated with Na3 V2 (PO4 )3 cathode, the all-solid-state sodium metal batteries (ASSMBs) demonstrate significantly improved rate and cycle performances, delivering a high discharge capacity of 117.5 mAh g-1 under 0.1 C and rendering high capacity retention of 78.2% after 1000 cycles even at 1 C.

13.
Small ; 18(52): e2205887, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344416

RESUMO

In this study, cuboid-like anhydrous CoC2 O4 particles (CoC2 O4 -HK) are synthesized through a potassium citrate-assisted hydrothermal method, which possess well-crystallized structure for fast Li+ transportation and efficient Li+ intercalation pseudocapacitive behaviors. When being used in lithium-ion batteries, the as-prepared CoC2 O4 -HK delivers a high reversible capacity (≈1360 mAh g-1 at 0.1 A g-1 ), good rate capability (≈650 mAh g-1 at 5 A g-1 ) and outstanding cycling stability (835 mAh g-1 after 1000 cycles at 1 A g-1 ). Characterizations illustrate that the Li+ -intercalation pseudocapacitance dominates the charge storage of CoC2 O4 -HK electrode, together with the reversible reaction of CoC2 O4 +2Li+ +2e- →Co+Li2 C2 O4 on discharging and charging. In addition, CoC2 O4 -HK particles are also used together with carbon-sulfur composite materials as the electrocatalysts for lithium-sulfur (Li-S) battery, which displays a gratifying sulfur electrochemistry with a high reversibility of 1021.5 mAh g-1 at 2 C and a low decay rate of 0.079% per cycle after 500 cycles. The density functional theory (DFT) calculations show that CoC2 O4 /C can regulate the adsorption-activation of reaction intermediates and therefore boost the catalytic conversion of polysulfides. Therefore, this work presents a new prospect of applying CoC2 O4 as the high-performance electrode materials for rechargeable Li-ion and Li-S batteries.

14.
Ophthalmic Res ; 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36349785

RESUMO

INTRODUCTION: Acute acquired concomitant esotropia (AACE) has been increased dramatically in myopia. To clarify whether fusional vergence dysfunctions exist in AACE with myopia, and to explore the relationship between fusional vergence and myopia in AACE Methods: A prospective clinical study. Adult AACE patients as well as controls (aged ≥18 years) both with myopia were prospectively recruited from October 2016 to August 2021. Refractive error and fusional divergence and convergence amplitude at distance were measured, as determined with a comprehensive refractor. The main outcome measures were the real value of the fusional divergence amplitude (calculated by subtracting the break point value from the angle of deviation) and the real value of the fusional convergence amplitude (calculated by subtracting the angle of deviation from the break point value). Two-sided p value of less than 0.05 was considered to indicate statistical significance. RESULTS: Fusional vergence consisting of fusional divergence and fusional convergence in patients with AACE of adulthood were different from the controls (p<0.001), with fusional convergence decreased and fusional divergence increased. In the linear regression analysis, spherical equivalents were significantly negatively correlated with fusional convergence (right eyes, p<0.001; left eyes, p<0.001) in patients with AACE of adulthood but not in controls. There was a significant difference in fusional convergence amplitude among different degrees of spherical equivalents (p<0.001). CONCLUSIONS: Fusional vergence dysfunction exist in AACE of adulthood, which may be attributed to self-adaptation based on concomitant esotropia to maintain fusion in AACE. Fusional convergence was associated with degrees of myopia, implying the adaption would be weakened as the degree of myopia becomes serious.

15.
Ophthalmol Ther ; 11(6): 2259-2270, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36208391

RESUMO

INTRODUCTION: To evaluate the 6-month efficacy and safety of 650 nm low-level red light (LLRL) for myopia control in children. METHODS: This was a single-center, single-masked randomized controlled trial. A total of 224 children aged 6-12 years with spherical equivalent error (SER) of - 6 diopter (D) to - 0.5 D were enrolled, and were randomized to LLRL group or control group. Children in the LLRL group underwent treatment twice daily, each lasting for 3 min, there was an interval of at least 4 h between treatments. Children in both groups were allowed to wear single-vision spectacles; no additional intervention was given to the control. The primary outcomes included change in cycloplegic SER and change in axial length (AL) during 6 months. RESULTS: The median 6-month changes in AL of the LLRL and control groups were - 0.06 mm (interquartile range, IQR - 0.15, 0) and 0.14 mm (IQR 0.07, 0.22), respectively. The difference between groups was significant (Z = 10.021, p < 0.001). The median 6-month changes in SER were 0.125 D (IQR 0, 0.375) and - 0.25 D (IQR - 0.5, 0) for the LLRL and control groups, respectively. The difference between groups was significant (Z = 8.827, p < 0.001). Compared with the control, the proportion of children with hyperopic shift in the LLRL group was higher (51.65% vs. 3.41%, p < 0.001), and the proportion of children with shortened AL in the LLRL group was higher (63.74% vs. 2.27%, p < 0.001). No adverse event was observed. CONCLUSION: 650 nm LLRL significantly slowed down the myopia progression in children aged 6-12 years, and there was no observable side effect in the short term.

16.
Int J Ophthalmol ; 15(8): 1338-1343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017050

RESUMO

AIM: To investigate the characteristics of near-work-related esotropia and the clinical efficacy of botulinum toxin type A (BTXA) injection therapy on it. METHODS: A total of 107 patients aged 15-57y with near-work-related esotropia were taken as the BTXA-treated group, and 30 other peers without near-work-related esotropia were included in the control group. All participants were refractive corrected to analyse the clinical characteristics of near-work-related esotropia. All subjects were examined including Worth4 spot examination, stereoscopic vision, strabismus angle, accommodative convergence to accommodation ratio (AC/A), far and near positive and negative convergence, positive and negative fusion range, positive and negative relative accommodation. Clinical efficacy was evaluated at a period of 10mo follow-up. RESULTS: The distant and near stereopsis were found in 84.9% and 77.5% of patients in the BTXA-treated group, respectively. In the control group, all patients had distant and near stereopsis. The incidence of taking off one's glasses to see close objects was significantly higher in the BTXA-treated group than in the control group (P<0.05). The BTXA-treated group showed a smaller range of in-fusion (9.84±5.72)° than the control group (22.04±8.71)° (P<0.05). The near esotropia angle of the BTXA-treated group (17.08±11.98)Δ was significantly smaller than the distant esotropia angle (19.07±11.68)Δ (P<0.05). Ten months after injection, the diplopia and esotropia of most patients underwent improvements after treatment (P<0.05). CONCLUSION: This study reveals that the accommodation function and the habit of near work without wearing spectacles are associated with near-work-related esotropia, while the length of time for near work and the onset time are independent of near-work-related esotropia. Additionally, BTXA injection therapy plays a vital role in relieving diplopia and restoring eye position.

17.
Anal Chem ; 94(35): 12042-12050, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35971273

RESUMO

The tunneling current through the single-molecule junctions principally offers the ultimate solution for chemical and biochemical sensing via the interactions between probes and target analytes at the single-molecule level. However, it remains unexplored to achieve the sensitive and selective detection of targeted analytes using single-molecule junction techniques due to the challenge in quantitative evaluation of sensing sensitivity and selectivity. Herein, we demonstrate a single-molecule tunneling sensor for the highly sensitive and selective detection of nitrobenzene explosives using scanning tunneling microscope break junction (STM-BJ). Taking advantage of π-π stacking interactions between the molecular probes and nitrobenzene explosives, we use a spectral clustering algorithm to assign the signal of probes and π-stacked probes for sensitively detecting the targeted analytes and the distinguishable conductance change of probes when interacting with different nitroaromatic explosive compounds for selective detection. We find that pronounced conductance changes up to 0.8 orders of magnitude when the probes interact with TNT. Also, we obtain a sensitivity of up to ∼10 pM for TNT and high sensitivity for eight TNT analogues. Combined with theoretical calculations, we discover that the harness of the destructive quantum interference of the probe M1OH after interacting with TNT leads to high selectivity in sensing with TNT. Our work demonstrates the great potential of the single-molecule tunneling current for environmental sensing molecules with high selectivity and sensitivity.


Assuntos
Substâncias Explosivas , Nanotecnologia , Nitrobenzenos
18.
Nat Chem ; 14(10): 1158-1164, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35902741

RESUMO

Intermolecular charge transport plays an essential role in organic electronic materials and biological systems. To date, experimental investigations of intermolecular charge transport in molecular materials and electronic devices have been restricted to conjugated systems in which π-π stacking interactions are involved. Herein we demonstrate that the σ-σ stacking interactions between neighbouring non-conjugated molecules offer an efficient pathway for charge transport through supramolecular junctions. The conductance of σ-σ stacked molecular junctions formed between two non-conjugated cyclohexanethiol or single-anchored adamantane molecules is comparable to that of π-π stacked molecular junctions formed between π-conjugated benzene rings. The current-voltage characteristics and flicker noise analysis demonstrate the existence of stacked molecular junctions formed between the electrode pairs and exhibit the characteristics of through-space charge transport. Density functional theory calculations combined with the non-equilibrium Green's function method reveal that efficient charge transport occurs between two molecules configured with σ-σ stacking interactions.


Assuntos
Adamantano , Benzeno , Eletrodos , Eletrônica , Nanotecnologia
19.
Mar Environ Res ; 179: 105691, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35779401

RESUMO

In recent years, scholars have paid increased attention to the ecological role of crab burrows, particularly their impact on the hydrological processes of saltmarsh wetlands. This study aims to investigate the influence of crab burrows on soil water and salt transport and to understand the ecological significance of crab burrows in coastal wetlands from the perspective of ecohydrological processes. We combined a field sample survey and an indoor soil column infiltration experiment to analyze the differences in infiltration time, soil water content, and soil electrical conductivity (EC) between different experimental groups. Consequently, the results showed that the size of crab burrow diameter varies significantly in different areas of the coastal wetland, influenced by tidal creek and sea-land distances, with larger burrow diameters in areas around 5 m from the tidal creek. Large-diameter burrows (2.5 cm × 6) are more conducive to salt transport due to their preferential water conductivity to the underlying soil vertically, small-diameter burrows (0.5 cm × 6) could promote water infiltration uniformly and maintain good soil water retention capacity. This study's results provide insights into the hydrological connectivity and spatial distribution of salinity in coastal wetlands. Additionally, the positive impact of burrows on the water-salt environment of coastal wetland sediments may also provide new ideas for coastal wetland restoration.


Assuntos
Braquiúros , Áreas Alagadas , Animais , Salinidade , Solo , Água
20.
Chem Sci ; 13(26): 7765-7772, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35865890

RESUMO

The ability to control the atomic-level structure of a solid represents a straightforward strategy for fabricating high-performance catalysts and semiconductor materials. Herein we explore the capability of the mechanically controllable surface strain method in adjusting the surface structure of a gold film. Underpotential deposition measurements provide a quantitative and ultrasensitive approach for monitoring the evolution of surface structures. The electrochemical activities of the quasi-single-crystalline gold films are enhanced productively by controlling the surface tension, resulting in a more positive potential for copper deposition. Our method provides an effective way to tune the atom arrangement of solid surfaces with sub-angstrom precision and to achieve a reduction in power consumption, which has vast applications in electrocatalysis, molecular electronics, and materials science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...