Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Food Chem ; 460(Pt 2): 140661, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39089019

RESUMO

This study investigated the effect of calcium chloride (CaCl2) combined with acetic acid (AA) pretreatment on the oil absorption of potato chips and explored the possible mechanisms influencing oil absorption. Results indicated that compared with hot water blanching, the combination of 0.3% CaCl2 blanching and AA soaking for 2-8 h pretreatment was found to reduce oil content by 10.52%-12.68% and significantly improve the crispness and color of fried potato chips. Microstructural and textural analyses revealed that the main reason for the reduction in oil content was the promotion of pectin gelation in the cell wall by CaCl2 and AA. However, it was observed that prolonged AA soaking time and high-concentration CaCl2 blanching led to an increase in total oil content and decrease in brittleness. Based on the results of surface roughness and moisture content analyses, it was suggested that the CaCl2 and AA pretreatments affected surface roughness and moisture content, thereby increasing oil absorption and reducing brittleness during frying.

2.
Carcinogenesis ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162797

RESUMO

Tumor-associated macrophages (TAMs) take on pivotal and complex roles in the tumor microenvironment (TME); however, their heterogeneity in the TME remains incompletely understood. ETS proto-oncogene 1 (ETS1) is a transcription factor that is mainly expressed in lymphocytes. However, its expression and immunoregulatory role in colorectal cancer (CRC)-associated macrophages remain unclear. In the study, the expression levels of ETS1 in CD68+ macrophages in the CRC microenvironment were significantly higher than those in matched para-carcinoma tissues. Importantly, ETS1 increased the levels of chemokines C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 10 (CXCL10) in lipopolysaccharide-stimulated THP-1 cells. It also boosted the migration and invasion of CRC cells during the in vitro co-culture. In ETS1 conditional knockout mouse model, ETS1 deficiency in macrophages ameliorated the histological changes in DSS-induced ulcerative colitis mouse models and prolonged the survival in an azomethane/dextran sodium sulfate (AOM/DSS)-induced CRC model. ETS1 deficiency in macrophages substantially inhibited tumor formation, reduced F4/80+TIM4+ macrophages in the mesenteric lymph nodes, and decreased CCL2 and CXCL10 protein levels in tumor tissues. Moreover, ETS1 deficiency in macrophages effectively prevented liver metastasis of CRC and reduced the infiltration of TAMs into the metastasis sites. Subsequent studies have indicated that ETS1 upregulated the expression of T-cell immunoglobulin mucin receptor 4 in macrophages through the signal transducer and activator of transcription 1 signaling pathway activated by the autocrine action of CCL2/CXCL10. Collectively, ETS1 deficiency in macrophages potentiates antitumor immune responses by repressing CCL2 and CXCL10 expression, shedding light on potential therapeutic strategies for CRC.

3.
Biochem Pharmacol ; 227: 116451, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059771

RESUMO

The increasing threat of antibiotic resistance among pathogenic microorganisms and the urgent demand for new antibiotics require immediate attention. Antimicrobial peptides exhibit effectiveness against microorganisms, fungi, viruses, and protozoa. The discovery of human ß-defensins represents a major milestone in biomedical research, opening new avenues for scientific investigation into the innate immune system and its resistance mechanisms against pathogenic microorganisms. Multiple defensins present a promising alternative in the context of antibiotic abuse. However, obstacles to the practical application of defensins as anti-infective therapies persist due to the unique properties of human ß-defensins themselves and serious pharmacological and technical challenges. To overcome these challenges, diverse delivery vehicles have been developed and progressively improved for the conjugation or encapsulation of human ß-defensins. This review briefly introduces the biology of human ß-defensins, focusing on their multistage structure and diverse functions. It also discusses several heterologous systems for producing human ß-defensins, various delivery systems created for these peptides, and patent applications related to their utilization, concluding with a summary of current challenges and potential solutions.


Assuntos
beta-Defensinas , Humanos , beta-Defensinas/química , beta-Defensinas/farmacologia , beta-Defensinas/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/administração & dosagem
4.
Immunobiology ; 229(5): 152831, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944891

RESUMO

The pro-tumorigenic or anti-tumorigenic role of tumor infiltrating mast cells (TIMs) in tumors depends not only on the type of cancer and the degree of tumor progression, but also on their location in the tumor bulk. In our investigation, we employed immunohistochemistry to reveal that the mast cells (MCs) in the tumor stroma are positively correlated with metastasis of ovarian cancer (OC), but not in the tumor parenchyma. To delve deeper into the influence of different culture matrix stiffness on MCs' biological functions within the tumor parenchymal and stromal regions, we conducted a transcriptome analysis of the mouse MC line (P815) cultured in two-dimensional (2D) or three-dimensional (3D) culture system. Further research has found that the softer 3D extracellular matrix stiffness could improve the mitochondrial activity of MCs to promote proliferation by increasing the expression levels of mitochondrial activity-related genes, namely Pet100, atp5md, and Cox7a2. Furthermore, employing LASSO regression analysis, we identified that Pet100 and Cox7a2 were closely associated with the prognosis of OC patients. These two genes were subsequently employed to construct a risk score model, which revealed that the high-risk group model as one of the prognostic factors for OC patients. Additionally, the XCell algorithm analysis showed that the high-risk group displayed a broader spectrum of immune cell infiltrations. Our research revealed that TIMs in the tumor stroma could promote the metastasis of OC, and mitochondrial activity-related proteins Pet100/Cox7a2 can serve as biomarkers for prognostic evaluation of OC.

5.
Mater Today Bio ; 25: 101012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38464495

RESUMO

Urethral stricture (US) is a common disease in urology, lacking effective treatment options. Although injecting a stem cells suspension into the affected area has shown therapeutic benefits, challenges such as low retention rate and limited efficacy hinder the clinical application of stem cells. This study evaluates the therapeutic impact and the mechanism of adipose-derived vascular fraction (SVF) combined with cell sheet engineering technique on urethral fibrosis in a rat model of US. The results showed that SVF-cell sheets exhibit positive expression of α-SMA, CD31, CD34, Stro-1, and eNOS. In vivo study showed less collagen deposition, low urethral fibrosis, and minimal tissue alteration in the group receiving cell sheet transplantation. Furthermore, the formation of a three-dimensional (3D) tissue-like structure by the cell sheets enhances the paracrine effect of SVF, facilitates the infiltration of M2 macrophages, and suppresses the TGF-ß/Smad2 pathway through HGF secretion, thereby exerting antifibrotic effects. Small animal in vivo imaging demonstrates improved retention of SVF cells at the damaged urethra site with cell sheet application. Our results suggest that SVF combined with cell sheet technology more efficiently inhibits the early stages of urethral fibrosis.

6.
Mol Biotechnol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456963

RESUMO

Precise quantification of human cells in preclinical animal models by a sensitive and specific approach is warranted. The probe-based quantitative PCR (qPCR) assay as a sensitive and swift approach is suitable for the quantification of human cells by targeting human-specific DNA sequences. In this study, we developed an efficient qPCR assay targeting human-specific DNA in ST6GALNAC3 (termed ST6GAL-qPCR) for the quantification of human cells in preclinical animal models. ST6GAL-qPCR probe was synthesized with FAM and non-fluorescent quencher-minor groove binder conjugated to the 5' and 3' end of the probe, respectively. Genomic DNA from human, rhesus monkeys, cynomolgus monkeys, New Zealand White rabbits, SD rats, C57BL/6, and BALB/c mice were utilized for analyzing the specificity and sensitivity of the ST6GAL-qPCR assay. The ST6GAL-qPCR assay targeted human-specific DNA was cloned to pUCM-T vector and released by EcoR I/Hind III digestion for generating a calibration curve. Cell mixing experiment was performed to validate the ST6GAL-qPCR assay by analysis of 0.1%, 0.01%, and 0.001% of human leukocytes mixed with murine thymocytes. The ST6GAL-qPCR assay detected human DNA rather than DNA from the tested animal species. The amplification efficiency of the ST6GAL-qPCR assay was 93% and the linearity of calibration curve was R2 = 0.999. The ST6GAL-qPCR assay detected as low as 5 copies of human-specific DNA and is efficient to specially amplify as low as 30-pg human DNA in the presence of 1 µg of DNA from the tested species, respectively. The ST6GAL-qPCR assay was able to quantify as low as 0.01% of human leukocytes within murine thymocytes. This ST6GAL-qPCR assay can be used as an efficient approach for the quantification of human cells in preclinical animal models.

7.
Am J Cancer Res ; 14(1): 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323271

RESUMO

Mast cells (MCs) have emerged as pivotal contributors to both the defensive immune response and immunomodulation. They also exhibit regulatory functions in modulating pathological processes across various allergic diseases. The impact of MC presence within tumor tissues has garnered considerable attention, yielding conflicting findings. While some studies propose that MCs within tumor tissues promote tumor initiation and progression, others advocate an opposing perspective. Notably, evidence emphasizes the dual role of MCs in cancer, both as promoters and suppressors, is crucial for optimizing cancer treatment strategies. These conflicting viewpoints have generated substantial controversy, underscoring the need for a comprehensive understanding of MC's role in tumor immune responses.

8.
Cancer Sci ; 115(4): 1224-1240, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403332

RESUMO

The transcription factor forkhead box protein O1 (FoxO1) is closely related to the occurrence and development of ovarian cancer (OC), however its role and molecular mechanisms remain unclear. Herein, we found that FoxO1 was highly expressed in clinical samples of OC patients and was significantly correlated with poor prognosis. FoxO1 knockdown inhibited the proliferation of OC cells in vitro and in vivo. ChIP-seq combined with GEPIA2 and Kaplan-Meier database analysis showed that structural maintenance of chromosome 4 (SMC4) is a downstream target of FoxO1, and FoxO1 promotes SMC4 transcription by binding to its -1400/-1390 bp promoter. The high expression of SMC4 significantly blocked the tumor inhibition effect of FoxO1 knockdown. Furtherly, FoxO1 increased SMC4 mRNA abundance by transcriptionally activating methyltransferase-like 14 (METTL14) and increasing SMC4 m6A methylation on its coding sequence region. The Cancer Genome Atlas dataset analysis confirmed a significant positive correlation between FoxO1, SMC4, and METTL14 expression in OC. In summary, this study revealed the molecular mechanisms of FoxO1 regulating SMC4 and established a clinical link between the expression of FoxO1/METTL14/SMC4 in the occurrence of OC, thus providing a potential diagnostic target and therapeutic strategy.


Assuntos
Cromossomos Humanos Par 4 , Neoplasias Ovarianas , Feminino , Humanos , Adenosina Trifosfatases/genética , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Cromossomos Humanos Par 4/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Estimativa de Kaplan-Meier , Metiltransferases/genética , Neoplasias Ovarianas/patologia
9.
Cell Death Dis ; 15(2): 107, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302412

RESUMO

Programmed cell death 1 ligand 1 (PDL1)/programmed cell death 1 (PD1) blockade immunotherapy provides a prospective strategy for the treatment of colorectal cancer (CRC), but various constraints on the effectiveness of the treatment are still remaining. As reported in previous studies, follistatin-like 3 (FSTL3) could mediate inflammatory response in macrophages by induction lipid accumulation. Herein, we revealed that FSTL3 were overexpressed in malignant cells in the CRC microenvironment, notably, the expression level of FSTL3 was related to tumor immune evasion and the clinical efficacy of anti-PD1 therapy. Further studies determined that hypoxic tumor microenvironment induced the FSTL3 expression via HIF1α in CRC cells, FSTL3 could bind to the transcription factor c-Myc (354-406 amino acids) to suppress the latter's ubiquitination and increase its stability, thereby to up-regulated the expression of PDL1 and indoleamine 2,3-dioxygenase 1 (IDO1). The results in the immunocompetent tumor models verified that FSLT3 knockout in tumor cells increased the proportion of CD8+ T cells in the tumor microenvironment, reduced the proportion of regulatory T cells (CD25+ Foxp3+) and exhausted T cells (PD1+ CD8+), and synergistically improved the anti-PD1 therapy efficacy. To sum up, FSTL3 enhanced c-Myc-mediated transcriptional regulation to promote immune evasion and attenuates response to anti-PD1 therapy in CRC, suggesting the potential of FSTL3 as a biomarker of immunotherapeutic efficacy as well as a novel immunotherapeutic target in CRC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Humanos , Evasão Tumoral , Imunoterapia/métodos , Linfócitos T Reguladores , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Microambiente Tumoral
10.
Food Res Int ; 178: 113906, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309900

RESUMO

Surface profiles are important evaluation indices for oil absorption behavior of fried foods. This research established two intelligent models of partial least-squares regression (PLSR) and back propagation artificial neural network (BP-ANN) for monitoring the oil absorption behavior of French fries based on the surface characteristics. Surface morphology and texture of French fries by rapeseed oil (RO) and high-oleic peanut oil (HOPO) at different temperatures were investigated. Results showed that oil content of samples increased with frying temperature, accounting for 37.7% and 41.4% of samples fried by RO and HOPO respectively. The increase of crust ratio, roughness and texture parameters (Fm, Nwr, fwr, Wc) and the decrease of uniformity were observed with the frying temperature. Coefficients of prediction set of PLSR and BP-ANN models were more than 0.93, which indicated that surface features combined with chemometrics were rapid and precise methods for determining the oil content of French fries.


Assuntos
Culinária , Solanum tuberosum , Culinária/métodos , Óleo de Brassica napus , Óleo de Amendoim , Temperatura Alta
11.
J Transl Med ; 22(1): 58, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221609

RESUMO

BACKGROUND: Chimeric antigen receptor CAR-T cell therapies have ushered in a new era of treatment for specific blood cancers, offering unparalleled efficacy in cases of treatment resistance or relapse. However, the emergence of cytokine release syndrome (CRS) as a side effect poses a challenge to the widespread application of CAR-T cell therapies. Melatonin, a natural hormone produced by the pineal gland known for its antioxidant and anti-inflammatory properties, has been explored for its potential immunomodulatory effects. Despite this, its specific role in mitigating CAR-T cell-induced CRS remains poorly understood. METHODS: In this study, our aim was to investigate the potential of melatonin as an immunomodulatory agent in the context of CD19-targeting CAR-T cell therapy and its impact on associated side effects. Using a mouse model, we evaluated the effects of melatonin on CAR-T cell-induced CRS and overall survival. Additionally, we assessed whether melatonin administration had any detrimental effects on the antitumor efficacy and persistence of CD19 CAR-T cells. RESULTS: Our findings demonstrate that melatonin effectively mitigated the severity of CAR-T cell-induced CRS in the mouse model, leading to improved overall survival outcomes. Remarkably, melatonin administration did not compromise the antitumor effectiveness or persistence of CD19 CAR-T cells, indicating its compatibility with therapeutic goals. These results suggest melatonin's potential as an immunomodulatory compound to alleviate CRS without compromising the therapeutic benefits of CAR-T cell therapy. CONCLUSION: The study's outcomes shed light on melatonin's promise as a valuable addition to the existing treatment protocols for CAR-T cell therapies. By attenuating CAR-T cell-induced CRS while preserving the therapeutic impact of CAR-T cells, melatonin offers a potential strategy for optimizing and refining the safety and efficacy profile of CAR-T cell therapy. This research contributes to the evolving understanding of how to harness immunomodulatory agents to enhance the clinical application of innovative cancer treatments.


Assuntos
Síndrome da Liberação de Citocina , Imunoterapia Adotiva , Melatonina , Antígenos CD19 , Terapia Baseada em Transplante de Células e Tecidos , Síndrome da Liberação de Citocina/terapia , Fatores Imunológicos/farmacologia , Imunoterapia Adotiva/efeitos adversos , Melatonina/farmacologia , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Animais , Camundongos
12.
Front Plant Sci ; 14: 1269200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078104

RESUMO

Introduction: The TGA transcription factors, plays a crucial role in regulating gene expression. In cultivated peanut (Arachis hypogaea), which faces abiotic stress challenges, understanding the role of TGAs is important. Methods: In this study, we conducted a comprehensive in analysis of the TGA gene family in peanut to elucidate their regulatory mechanisms and expression patterns under abiotic stress and hormone treatments. Furthermore, functional studies on the representative AhTGA gene in peanut cultivars were conducted using transgenic Arabidopsis and soybean hair roots. Results: The genome-wide analysis revealed that a total of 20 AhTGA genes were identified and classified into five subfamilies. Collinearity analysis revealed that AhTGA genes lack tandem duplication, and their amplification in the cultivated peanut genome primarily relies on the whole-genome duplication of the diploid wild peanut to form tetraploid cultivated peanut, as well as segment duplication between the A and B subgenomes. Promoter and Protein-protein interaction analysis identified a wide range of cis-acting elements and potential interacting proteins associated with growth and development, hormones, and stress responses. Expression patterns of AhTGA genes in different tissues, under abiotic stress conditions for low temperature and drought, and in response to hormonal stimuli revealed that seven AhTGA genes from groups I (AhTGA04, AhTGA14 and AhTGA20) and II (AhTGA07, AhTGA11, AhTGA16 and AhTGA18) are involved in the response to abiotic stress and hormonal stimuli. The hormone treatment results indicate that these AhTGA genes primarily respond to the regulation of jasmonic acid and salicylic acid. Overexpressing AhTGA11 in Arabidopsis enhances resistance to cold and drought stress by increasing antioxidant activities and altering endogenous hormone levels, particularly ABA, SA and JA. Discussion: The AhTGA genes plays a crucial role in hormone regulation and stress response during peanut growth and development. The findings provide insights into peanut's abiotic stress tolerance mechanisms and pave the way for future functional studies.

13.
Am J Cancer Res ; 13(10): 4888-4902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970340

RESUMO

Based on its absence in normal tissues and its role in tumorigenesis and tumor progression, insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), a reader of N6-methyladenosine (M6A) on RNA, represents a putative valuable and specific target for some cancer therapy. In this study, we performed bioinformatic analysis and immunohistochemistry (IHC) to find that IGF2BP3 was highly expressed in tumor epithelial cells and fibroblasts of ovarian cancer (OC), and was associated with poor prognosis, metastasis, and chemosensitivity in OC patients. In particular, we discovered that knockdown IGF2BP3 expression inhibited the malignant phenotype of OC cell lines by decreasing the protein levels of c-MYC, VEGF, CDK2, CDK6, and STAT1. To explore the feasibility of IGF2BP3 as a therapeutic target for OC, a small molecular AE-848 was designed and screened by molecular operating environment (MOE), which not only could duplicate the above results of knockdown assay but also reduced the expression of c-MYC in M2 macrophages and tumor-associated macrophages and promoted the cytokine IFN-γ and TNF-α secretion. The pharmacodynamic models of two kinds of OC bearing animals were suggested that systemic therapy with AE-848 significantly inhibited tumor growth by reducing the expression of tumor-associated antigen (c-MYC/VEGF/Ki67/CDK2) and improving the anti-tumor effect of macrophages. These results suggest that AE-848 can inhibit the growth and progression of OC cells by disrupting the stability of the targeted mRNAs of IGF2BP3 and may be a targeted drug for OC treatment.

14.
Int J Biol Sci ; 19(14): 4672-4688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781028

RESUMO

Background: N6-Methyladenosine (m6A) is considered to be the most prevalent and abundant internal modification observed in mRNA between viruses and mammals. As a reversible epigenetic modification, m6A controls gene expression in diverse physiological and pathological processes. Accumulating evidence in recent years reveals that aberrant expression of m6A reader proteins may have tumor-suppressing or carcinogenic functions. However, the biological role and mechanism of m6A reader YTH Domain Containing 1 (YTHDC1) in ovarian cancer progression remain inadequately understood. Methods: Quantitative RT-PCR, immunohistochemistry, Western blot, and bioinformatics analyses were undertaken for studying the YTHDC1 expression in ovarian cancer. In vitro and in vivo models were used to examine the role of YTHDC1. RNA sequencing, RNA immunoprecipitation sequencing, m6A-modified RNA immunoprecipitation, actinomycin-D assay, chromatin immunoprecipitation, and Western blot were used in the investigation the regulatory mechanisms among YTHDC1, Signal Transducer and Activator of Transcription 3 (STAT3), Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1), and Glucosidase II Alpha Subunit (GANAB). Results: Here, we found that YTHDC1 expression is decreased in ovarian cancer. Overexpression of YTHDC1 inhibited ovarian cancer development both in vivo and in vitro. Mechanistically, PIK3R1 was identified to be the direct target for YTHDC1. YTHDC1 enhanced PIK3R1 stability in an m6A-dependent manner, which subsequently inhibited GANAB expression in the N-glycan biosynthesis via the STAT3 signaling. Conclusions: Our findings unveil YTHDC1 as a tumor suppressor in the progression of ovarian cancer and as a potential prognostic biomarker that could serve as a target in ovarian cancer treatment.


Assuntos
Proteínas do Tecido Nervoso , Neoplasias Ovarianas , Fatores de Processamento de RNA , Fator de Transcrição STAT3 , Animais , Feminino , Humanos , Adenosina , Classe Ia de Fosfatidilinositol 3-Quinase , Proteínas do Tecido Nervoso/genética , Neoplasias Ovarianas/genética , Fatores de Processamento de RNA/genética , Fator de Transcrição STAT3/genética
15.
Mol Biol Rep ; 50(11): 9229-9237, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37805662

RESUMO

BACKGROUND: Precise quantification of grafted human cells in preclinical animal models such as non-human primates, rodents and rabbits is needed for the evaluations of the safety and efficacy of cell therapy. Quantitative PCR (qPCR) as a swift, sensitive and powerful assay is suitable for human cell quantification. However, it is a formidable challenge due to that the genome of non-human primates share more than 95% of similarity as human. METHODS: In the present study, we developed a probe-based quantitative PCR (qPCR) assay for the quantification of human cells in preclinical animal models via targeting human specific DNA in the intron of BRCA1 (termed BRCA1-qPCR). The 5' and 3' end of BRCA1-qPCR probe was conjugated with FAM and non-fluorescent quencher-minor groove binder (NFQ-MGB), respectively. 1 µg of genomic DNA from human and preclinical animal models including rhesus monkeys, cynomolgus monkeys, New Zealand white rabbits, SD rats, C57BL/6 and BALB/c mice were used for determining the specificity and sensitivity of the BRCA1-qPCR assay. A calibration curve was generated by BRCA1-qPCR analysis of linearized plasmid containing targeted human specific DNA in BRCA1. The BRCA1-qPCR assay was validated by analysis of 0.003%, 0.03% and 0.3% of human leukocytes mixed within murine leukocytes. RESULTS: The BRCA1-qPCR assay detected human DNA rather than DNA from tested species. The amplification efficiency of the BRCA1-qPCR assay was 95.4% and the linearity of the calibration curve was R2 = 0.9997. The BRCA1-qPCR assay detected as low as 5 copies of human specific DNA and is efficient to specially amplify 30 pg human DNA in the presence of 1 µg of genomic DNA from tested species, respectively. The BRCA1-qPCR assay was able to quantify as low as 0.003% of human cells within murine leukocytes. CONCLUSION: The BRCA1-qPCR assay is efficient for the quantification of human cells in preclinical animal models.


Assuntos
DNA , Primatas , Humanos , Animais , Ratos , Camundongos , Coelhos , Íntrons , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase , Modelos Animais , Proteína BRCA1/genética
16.
Soft Matter ; 19(43): 8423-8433, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37877309

RESUMO

To exploit the chemical asymmetry of diblock copolymer chains on the design of high-performance switch sensors, we propose an analytically tractable model system which contains an adsorption-responsive diblock copolymer in an otherwise inert brush, and study its phase transitions by using both analytical theory and self-consistent field calculations. The copolymer chain is chemically asymmetric in the sense that the two blocks assume different adsorption strengths, which is characterized by the defined adsorption ratio. We found that the conformation states, the number of stable phases, and transition types are mainly controlled by the length of each block and the adsorption ratio. In particular, when the length of the ungrafted block is longer than the brush chains, and the adsorption ratio is smaller than a critical value, the copolymer chain shows three thermodynamically stable states, and undergoes two unsynchronous transitions, where the two blocks respond to the adsorption in a different manner, when the adsorption changes from weak to sufficiently strong. For this kind of three-state transition, the transition point, transition barrier, and transition width are evaluated by using the self-consistent field method, and their scaling relationship with respect to the system parameters is extracted, which matches reasonably well with the predictions from the analytical theory. The self-consistent field calculations also indicate that the conformational transitions involved in the three-state transition process are sharp with a low energy barrier, and interestingly, barrier-free transitions are observed. Our finding shows that the three-state transitions not only specify a region where high performance unsynchronous switch sensors can be exploited, but may also provide a useful model understanding the unsynchronous biological processes.

17.
Front Microbiol ; 14: 1231354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692387

RESUMO

The development of ovarian cancer is closely related to various factors, such as environmental, genetic and microbiological factors. In previous research, bacteria were identified in human tumors by 16S rRNA sequencing. However, the microbial biomass in tumor tissue is too low and cannot be accurately identified by 16S rRNA sequencing. In our study, we employ 2bRAD sequencing for Microbiome (2bRAD-M), a new sequencing technology capable of accurately characterizing the low biomass microbiome (bacteria, fungi and archaea) at species resolution. Here we surveyed 20 ovarian samples, including 10 ovarian cancer samples and 10 benign ovarian samples. The sequencing results showed that a total of 373 microbial species were identified in both two groups, of which 90 species shared in the two groups. The Meta statistic indicated that Chlamydophila_abortus and CAG-873_sp900550395 were increased in the ovarian cancer tissues, while Lawsonella_clevelandensis_A, Ralstonia_sp001078575, Brevundimonas_aurantiaca, Ralstonia_sp900115545, Ralstonia_pickettii, Corynebacterium_kefirresidentii, Corynebacterium_sp000478175, Brevibacillus_D_fluminis, Ralstonia_sp000620465, and Ralstonia_mannitolilytica were more abundant in the benign ovarian tissues. This is the first use of 2bRAD-M technique to provide an important hint for better understanding of the ovarian cancer microbiome.

19.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37097293

RESUMO

The formation of germinal centers (GCs) is crucial for humoral immunity and vaccine efficacy. Constant stimulation through microbiota drives the formation of constitutive GCs in Peyer's patches (PPs), which generate B cells that produce antibodies against gut antigens derived from commensal bacteria and infectious pathogens. However, the molecular mechanism that regulates this persistent process is poorly understood. We report that Ewing Sarcoma Breakpoint Region 1 (EWSR1) is a brake to constitutive GC generation and immunoglobulin G (IgG) production in PPs, vaccination-induced GC formation, and IgG responses. Mechanistically, EWSR1 suppresses Bcl6 upregulation after antigen encounter, thereby negatively regulating induced GC B cell generation and IgG production. We further showed that tumor necrosis factor receptor-associated factor (TRAF) 3 serves as a negative regulator of EWSR1. These results established that the TRAF3-EWSR1 signaling axis acts as a checkpoint for Bcl6 expression and GC responses, indicating that this axis is a therapeutic target to tune GC responses and humoral immunity in infectious diseases.


Assuntos
Nódulos Linfáticos Agregados , Fator 3 Associado a Receptor de TNF , Antígenos/metabolismo , Linfócitos B , Centro Germinativo , Imunoglobulina G/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA