Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38666858

RESUMO

Understanding of seed germination requirements and storage methods is very important to successfully conserve and restore aquatic vegetation. The main question addressed by the research was germination requirements and suitable seed storage methods of Hydrocharis dubia seeds. Furthermore, the water content and respiration rate of H. dubia seeds were studied under different storage conditions. The study found that light and high seed clustering density had a positive effect on germination, while burial had a negative effect. Germination percentages were 60.67 ± 6.11% and 28.40 ± 6.79% in light and dark conditions, respectively. Under clustering densities of 1 and 50, germination percentages were 6.00 ± 2.00% and 59.33 ± 0.67%, respectively. Germination percentages were 50.40 ± 5.00%, 3.20 ± 3.20%, and 0.80 ± 0.80% at depths of 0, 2, and 3 cm, respectively. Oxygen, water level, and substratum had no significant effect on seed germination. Storage method had a significant effect on seed germination, moisture content, and respiration rate. The germination percentages were 64.00 ± 1.67%, 85.20 ± 5.04%, and 92.80 ± 4.27% under the storage conditions of 4 °C-Dry, 4 °C-Wet, and Ambient water temperature-Wet for 2 years, respectively. The seeds had no germination under the storage conditions of Ambient air temperature-Wet and Ambient air temperature-Dry. Overall, the study indicates that seed germination of H. dubia is restricted by light, burial depth, and seed clustering density. Additionally, it was found that H. dubia seeds can be stored in wet environmental conditions at ambient water temperature, similar to seed banks. Specifically, the seeds can be stored in sand and submerged underwater at ambient water temperatures ranging from 4 °C to 25 °C. This study will help with the conservation and restoration of aquatic plants, such as H. dubia.

2.
Plants (Basel) ; 13(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276761

RESUMO

The increasing use of herbicides in intelligent agricultural production is driven by the time-consuming nature of manual weeding, as well as its ephemeral effectiveness. However, herbicides like butachlor degrade slowly and can be washed away by rainwater, ultimately flowing into the farm ponds and posing risks to aquatic plants. To identify and recommend superior restoration strategies that effectively address the challenges posed by butachlor, we investigated the impacts of butachlor on the growth and physiology of four common aquatic plants (i.e., Hydrilla verticillata, Ceratophyllum demersum, Potamogeton maackianus, and Myriophyllum aquaticum) and their potential role in mitigating environmental damage by reducing residual herbicide levels. Our findings indicated that M. aquaticum was tolerant to butachlor, exhibiting higher growth rates than other species when exposed to various butachlor concentrations. However, the concentration of butachlor negatively impacted the growth of H. verticillata, C. demersum, and P. maackianus, with higher concentrations leading to more significant inhibitory effects. After a 15-day experimental period, aquatic plants reduced the butachlor residuals in culture mediums across concentrations of 0.5 mg/L, 1 mg/L, and 2 mg/L compared to non-plant controls. Our findings classified P. maackianus as butachlor-sensitive and M. aquaticum as butachlor-tolerant species. This investigation represents novel research aimed at elucidating the contrasting effects of different concentrations of butachlor on four common aquatic species in the agricultural multi-pond system.

3.
Environ Pollut ; 223: 395-402, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28117183

RESUMO

Silver nanoparticles (AgNPs) inevitably discharge into aquatic environments due to their abundant use in antibacterial products. It was reported that in laboratory conditions, AgNPs display dose-dependent toxicity to aquatic organisms, such as bacteria, algae, macrophytes, snails and fishes. However, AgNPs could behave differently in natural complex environments. In the present study, a series of microcosms were established to investigate the distribution and toxicity of AgNPs at approximately 500 µg L-1 in aquatic systems. As a comparison, the distribution and toxicity of the same concentration of AgNO3 were also determined. The results showed that the surface layer of sediment was the main sink of Ag element for both AgNPs and AgNO3. Both aquatic plant (Hydrilla verticillata) and animals (Gambusia affinis and Radix spp) significantly accumulated Ag. With short-term treatment, phytoplankton biomass was affected by AgNO3 but not by AgNPs. Chlorophyll content of H. verticillata increased with both AgNPs and AgNO3 short-term exposure. However, the biomass of phytoplankton, aquatic plant and animals was not significantly different between control and samples treated with AgNPs or AgNO3 for 90 d. The communities, diversity and richness of microbes were not significantly affected by AgNPs and AgNO3; in contrast, the nitrification rate and its related microbe (Nitrospira) abundance significantly decreased. AgNPs and AgNO3 may affect the nitrogen cycle and affect the environment and, since they might be also transferred to food web, they represent a risk for health.


Assuntos
Antibacterianos/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Nanopartículas Metálicas/toxicidade , Compostos de Prata/toxicidade , Águas Residuárias/química , Poluição Química da Água/efeitos adversos , Animais , Antibacterianos/análise , Antibacterianos/farmacocinética , Organismos Aquáticos/metabolismo , Biodiversidade , Biomassa , Exposição Ambiental/análise , Sedimentos Geológicos/química , Nanopartículas Metálicas/análise , Nitrificação/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/metabolismo , Compostos de Prata/análise , Compostos de Prata/farmacocinética , Testes de Toxicidade , Poluição Química da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA