Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 278: 116441, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733805

RESUMO

Oxybenzone (OBZ; benzophenone-3, CAS# 131-57-7), as a new pollutant and ultraviolet absorbent, shows a significant threat to the survival of phytoplankton. This study aims to explore the acute toxic effects of OBZ on the growth of the microalga Selenastrum capricornutum, as well as the mechanisms for its damage to the primary metabolic pathways of photosynthesis and respiration. The results demonstrated that the concentrations for 50 % of maximal effect (EC50) of OBZ for S. capricornutum were 9.07 mg L-1 and 8.54 mg L-1 at 72 h and 96 h, respectively. A dosage of 4.56 mg L-1 OBZ significantly lowered the photosynthetic oxygen evolution rate of S. capricornutum in both light and dark conditions for a duration of 2 h, while it had no effect on the respiratory oxygen consumption rate under darkness. OBZ caused a significant decline in the efficiency of photosynthetic electron transport due to its damage to photosystem II (PSII), thereby decreasing the photosynthetic oxygen evolution rate. Over-accumulated H2O2 was produced under light due to the damage caused by OBZ to the donor and acceptor sides of PSII, resulting in increased peroxidation of cytomembranes and inhibition of algal respiration. OBZ's damage to photosynthesis and respiration will hinder the conversion and reuse of energy in algal cells, which is an important reason that OBZ has toxic effects on S. capricornutum. The present study indicated that OBZ has an acute toxic effect on the microalga S. capricornutum. In the two most important primary metabolic pathways in algae, photosynthesis is more sensitive to the toxicity of OBZ than respiration, especially in the dark.


Assuntos
Benzofenonas , Microalgas , Fotossíntese , Protetores Solares , Fotossíntese/efeitos dos fármacos , Benzofenonas/toxicidade , Microalgas/efeitos dos fármacos , Protetores Solares/toxicidade , Poluentes Químicos da Água/toxicidade , Peróxido de Hidrogênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Raios Ultravioleta , Transporte de Elétrons/efeitos dos fármacos
2.
Front Ophthalmol (Lausanne) ; 3: 1251328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38983041

RESUMO

This paper presents an innovative retinal imaging system tailored for in vivo fundus detection in small animals. This system integrates Scanning Laser Ophthalmoscopy (SLO) and optical Coherence Tomography (OCT) techniques, enabling the simultaneous generation of images from various modalities, including SLO reflectance, SLO fluorescein angiogram, OCT, and OCT angiogram. The existing multi-modal retinal imaging systems generally encounter limitations such as the inability to detect peripheral lesion areas attributed to small Field of View (FOV) design and susceptibility to sample motion due to slow data acquisition speed. To address these challenges, it's essential to underscore that this proposed system offers a range of notable advantages, including its compact design, the capacity for widefield imaging with a FOV of up to 100°, and a rapid OCT A-scan rate of 250 kHz, notably exceeding the capabilities of pre-existing multi-modal retinal imaging systems. Validation of the system involved imaging the eyes of normal wild-type mice and diseased mice afflicted with retinal detachment and choroidal neovascularization (CNV). The favorable imaging results demonstrate the system's reliability in identifying retinal lesions in small animals.

3.
Materials (Basel) ; 15(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888246

RESUMO

Nanoparticle aggregate structures allow for efficient photon capture, and thus exhibit excellent optical absorption properties. In this study, a model of randomly distributed nanochain aggregates on silicon substrates is developed and analyzed. The Gaussian, uniform, and Cauchy spatial distribution functions are used to characterize the aggregate forms of the nanochains and their morphologies are realistically reconstructed. The relationships between the structural parameters (thickness and filling factor), equivalent physical parameters (density, heat capacity, and thermal conductivity), and visible absorptivity of the structures are established and analyzed. All the above-mentioned parameters exhibit extreme values, which maximize the visible-range absorption; these values are determined by the material properties and nanochain aggregate structure. Finally, Al nanochain aggregate samples are fabricated on Si substrates by reducing the kinetic energy of the metal vapor during deposition. The spectral reflection characteristics of the samples are studied experimentally. The Spearman correlation coefficients for the calculated spectral absorption curves and those measured experimentally are higher than 0.82, thus confirming that the model is accurate. The relative errors between the calculated visible-range absorptivities and the measured data are less than 0.3%, further confirming the accuracy of the model.

4.
Sensors (Basel) ; 16(7)2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27347960

RESUMO

A novel microfluidic flow rate detection method based on surface plasmon resonance (SPR) temperature imaging is proposed. The measurement is performed by space-resolved SPR imaging of the flow induced temperature variations. Theoretical simulations and analysis were performed to demonstrate a proof of concept using this approach. Experiments were implemented and results showed that water flow rates within a wide range of tens to hundreds of µL/min could be detected. The flow rate sensor is resistant to disturbances and can be easily integrated into microfluidic lab-on-chip systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA