Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38745701

RESUMO

Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping across the whole mouse brain with 4.3-min temporal resolution. We designed a 3D MRF sequence with variable acquisition segment lengths and magnetization preparations on a 9.4T preclinical MRI scanner. Model-based reconstruction approaches were employed to improve the accuracy and speed of MRF acquisition. The method's accuracy for T1 and T2 measurements was validated in vitro, while its repeatability of T1 and T2 measurements was evaluated in vivo (n=3). The utility of the 3D MRF sequence for dynamic tracking of intracisternally infused Gd-DTPA in the whole mouse brain was demonstrated (n=5). Phantom studies confirmed accurate T1 and T2 measurements by 3D MRF with an undersampling factor up to 48. Dynamic contrast-enhanced (DCE) MRF scans achieved a spatial resolution of 192 x 192 x 500 um3 and a temporal resolution of 4.3 min, allowing for the analysis and comparison of dynamic changes in concentration and transport kinetics of intracisternally infused Gd-DTPA across brain regions. The sequence also enabled highly repeatable, high-resolution T1 and T2 mapping of the whole mouse brain (192 x 192 x 250 um3) in 30 min. We present the first dynamic and multi-parametric approach for quantitatively tracking contrast agent transport in the mouse brain using 3D MRF.

2.
Magn Reson Med ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725131

RESUMO

PURPOSE: For effective optimization of MR fingerprinting (MRF) pulse sequences, estimating and minimizing errors from actual scan conditions are crucial. Although virtual-scan simulations offer an approximation to these errors, their computational demands become expensive for high-dimensional MRF frameworks, where interactions between more than two tissue properties are considered. This complexity makes sequence optimization impractical. We introduce a new mathematical model, the systematic error index (SEI), to address the scalability challenges for high-dimensional MRF sequence design. METHODS: By eliminating the need to perform dictionary matching, the SEI model approximates quantification errors with low computational costs. The SEI model was validated in comparison with virtual-scan simulations. The SEI model was further applied to optimize three high-dimensional MRF sequences that quantify two to four tissue properties. The optimized scans were examined in simulations and healthy subjects. RESULTS: The proposed SEI model closely approximated the virtual-scan simulation outcomes while achieving hundred- to thousand-times acceleration in the computational speed. In both simulation and in vivo experiments, the optimized MRF sequences yield higher measurement accuracy with fewer undersampling artifacts at shorter scan times than the heuristically designed sequences. CONCLUSION: We developed an efficient method for estimating real-world errors in MRF scans with high computational efficiency. Our results illustrate that the SEI model could approximate errors both qualitatively and quantitatively. We also proved the practicality of the SEI model of optimizing sequences for high-dimensional MRF frameworks with manageable computational power. The optimized high-dimensional MRF scans exhibited enhanced robustness against undersampling and system imperfections with faster scan times.

3.
Invest Radiol ; 59(5): 359-371, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812483

RESUMO

OBJECTIVE: Given the limited repeatability and reproducibility of radiomic features derived from weighted magnetic resonance imaging (MRI), there may be significant advantages to using radiomics in conjunction with quantitative MRI. This study introduces a novel physics-informed discretization (PID) method for reproducible radiomic feature extraction and evaluates its performance using quantitative MRI sequences including magnetic resonance fingerprinting (MRF) and apparent diffusion coefficient (ADC) mapping. MATERIALS AND METHODS: A multiscanner, scan-rescan dataset comprising whole-brain 3D quantitative (MRF T1, MRF T2, and ADC) and weighted MRI (T1w MPRAGE, T2w SPACE, and T2w FLAIR) from 5 healthy subjects was prospectively acquired. Subjects underwent 2 repeated acquisitions on 3 distinct 3 T scanners each, for a total of 6 scans per subject (30 total scans). First-order statistical (n = 23) and second-order texture (n = 74) radiomic features were extracted from 56 brain tissue regions of interest using the proposed PID method (for quantitative MRI) and conventional fixed bin number (FBN) discretization (for quantitative MRI and weighted MRI). Interscanner radiomic feature reproducibility was measured using the intraclass correlation coefficient (ICC), and the effect of image sequence (eg, MRF T1 vs T1w MPRAGE), as well as image discretization method (ie, PID vs FBN), on radiomic feature reproducibility was assessed using repeated measures analysis of variance. The robustness of PID and FBN discretization to segmentation error was evaluated by simulating segmentation differences in brainstem regions of interest. Radiomic features with ICCs greater than 0.75 following simulated segmentation were determined to be robust to segmentation. RESULTS: First-order features demonstrated higher reproducibility in quantitative MRI than weighted MRI sequences, with 30% (n = 7/23) features being more reproducible in MRF T1 and MRF T2 than weighted MRI. Gray level co-occurrence matrix (GLCM) texture features extracted from MRF T1 and MRF T2 were significantly more reproducible using PID compared with FBN discretization; for all quantitative MRI sequences, PID yielded the highest number of texture features with excellent reproducibility (ICC > 0.9). Comparing texture reproducibility of quantitative and weighted MRI, a greater proportion of MRF T1 (n = 225/370, 61%) and MRF T2 (n = 150/370, 41%) texture features had excellent reproducibility (ICC > 0.9) compared with T1w MPRAGE (n = 148/370, 40%), ADC (n = 115/370, 32%), T2w SPACE (n = 98/370, 27%), and FLAIR (n = 102/370, 28%). Physics-informed discretization was also more robust than FBN discretization to segmentation error, as 46% (n = 103/222, 46%) of texture features extracted from quantitative MRI using PID were robust to simulated 6 mm segmentation shift compared with 19% (n = 42/222, 19%) of weighted MRI texture features extracted using FBN discretization. CONCLUSIONS: The proposed PID method yields radiomic features extracted from quantitative MRI sequences that are more reproducible and robust than radiomic features extracted from weighted MRI using conventional (FBN) discretization approaches. Quantitative MRI sequences also demonstrated greater scan-rescan robustness and first-order feature reproducibility than weighted MRI.


Assuntos
Imageamento por Ressonância Magnética , Radiômica , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
4.
Magn Reson Med ; 91(5): 1978-1993, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38102776

RESUMO

PURPOSE: To propose a new reconstruction method for multidimensional MR fingerprinting (mdMRF) to address shading artifacts caused by physiological motion-induced measurement errors without navigating or gating. METHODS: The proposed method comprises two procedures: self-calibration and subspace reconstruction. The first procedure (self-calibration) applies temporally local matrix completion to reconstruct low-resolution images from a subset of under-sampled data extracted from the k-space center. The second procedure (subspace reconstruction) utilizes temporally global subspace reconstruction with pre-estimated temporal subspace from low-resolution images to reconstruct aliasing-free, high-resolution, and time-resolved images. After reconstruction, a customized outlier detection algorithm was employed to automatically detect and remove images corrupted by measurement errors. Feasibility, robustness, and scan efficiency were evaluated through in vivo human brain imaging experiments. RESULTS: The proposed method successfully reconstructed aliasing-free, high-resolution, and time-resolved images, where the measurement errors were accurately represented. The corrupted images were automatically and robustly detected and removed. Artifact-free T1, T2, and ADC maps were generated simultaneously. The proposed reconstruction method demonstrated robustness across different scanners, parameter settings, and subjects. A high scan efficiency of less than 20 s per slice has been achieved. CONCLUSION: The proposed reconstruction method can effectively alleviate shading artifacts caused by physiological motion-induced measurement errors. It enables simultaneous and artifact-free quantification of T1, T2, and ADC using mdMRF scans without prospective gating, with robustness and high scan efficiency.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Imagens de Fantasmas , Artefatos
5.
Eur J Nucl Med Mol Imaging ; 48(13): 4189-4200, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34037831

RESUMO

Magnetic resonance fingerprinting (MRF) is an evolving quantitative MRI framework consisting of unique data acquisition, processing, visualization, and interpretation steps. MRF is capable of simultaneously producing multiple high-resolution property maps including T1, T2, M0, ADC, and T2* measurements. While a relatively new technology, MRF has undergone rapid development for a variety of clinical applications from brain tumor characterization and epilepsy imaging to characterization of prostate cancer, cardiac imaging, among others. This paper will provide a brief overview of current state of MRF technology including highlights of technical and clinical advances. We will conclude with a brief discussion of the challenges that need to be overcome to establish MRF as a quantitative imaging biomarker.


Assuntos
Neoplasias Encefálicas , Epilepsia , Encéfalo , Técnicas de Imagem Cardíaca , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Imagens de Fantasmas
6.
Clin Cancer Res ; 27(5): 1305-1315, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33293372

RESUMO

PURPOSE: We recently identified CD46 as a novel therapeutic target in prostate cancer. In this study, we developed a CD46-targeted PET radiopharmaceutical, [89Zr]DFO-YS5, and evaluated its performance for immunoPET imaging in murine prostate cancer models. EXPERIMENTAL DESIGN: [89Zr]DFO-YS5 was prepared and its in vitro binding affinity for CD46 was measured. ImmunoPET imaging was conducted in male athymic nu/nu mice bearing DU145 [AR-, CD46+, prostate-specific membrane antigen-negative (PSMA-)] or 22Rv1 (AR+, CD46+, PSMA+) tumors, and in NOD/SCID gamma mice bearing patient-derived adenocarcinoma xenograft, LTL-331, and neuroendocrine prostate cancers, LTL-331R and LTL-545. RESULTS: [89Zr]DFO-YS5 binds specifically to the CD46-positive human prostate cancer DU145 and 22Rv1 xenografts. In biodistribution studies, the tumor uptake of [89Zr]DFO-YS5 was 13.3 ± 3.9 and 11.2 ± 2.5 %ID/g, respectively, in DU145 and 22Rv1 xenografts, 4 days postinjection. Notably, [89Zr]DFO-YS5 demonstrated specific uptake in the PSMA- and AR-negative DU145 model. [89Zr]DFO-YS5 also showed uptake in the patient-derived LTL-331 and -331R models, with particularly high uptake in the LTL-545 neuroendocrine prostate cancer tumors (18.8 ± 5.3, 12.5 ± 1.8, and 32 ± 5.3 %ID/g in LTL-331, LTL-331R, and LTL-545, respectively, at 4 days postinjection). CONCLUSIONS: [89Zr]DFO-YS5 is an excellent PET imaging agent across a panel of prostate cancer models, including in both adenocarcinoma and neuroendocrine prostate cancer, both cell line- and patient-derived xenografts, and both PSMA-positive and -negative tumors. It demonstrates potential for clinical translation as an imaging agent, theranostic platform, and companion biomarker in prostate cancer.


Assuntos
Adenocarcinoma/patologia , Imunoconjugados/química , Proteína Cofatora de Membrana/imunologia , Imagem Molecular/métodos , Tumores Neuroendócrinos/patologia , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/farmacocinética , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/imunologia , Adenocarcinoma/metabolismo , Animais , Apoptose , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/imunologia , Tumores Neuroendócrinos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio/química
7.
Nat Commun ; 11(1): 3392, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636376

RESUMO

G-quadruplex (G4) is a noncanonical secondary structure of DNA or RNA which can enhance or repress gene expression, yet the underlying molecular mechanism remains uncertain. Here we show that when positioned downstream of transcription start site, the orientation of potential G4 forming sequence (PQS), but not the sequence alters transcriptional output. Ensemble in vitro transcription assays indicate that PQS in the non-template increases mRNA production rate and yield. Using sequential single molecule detection stages, we demonstrate that while binding and initiation of T7 RNA polymerase is unchanged, the efficiency of elongation and the final mRNA output is higher when PQS is in the non-template. Strikingly, the enhanced elongation arises from the transcription-induced R-loop formation, which in turn generates G4 structure in the non-template. The G4 stabilized R-loop leads to increased transcription by a mechanism involving successive rounds of R-loop formation.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Quadruplex G , Estruturas R-Loop , Transcrição Gênica , Proteínas Virais/genética , DNA/análise , DNA/química , RNA Polimerases Dirigidas por DNA/química , Transferência Ressonante de Energia de Fluorescência , Ligação Proteica , RNA/química , RNA Mensageiro/química , Sítio de Iniciação de Transcrição , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...