Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 2): 132431, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759853

RESUMO

Escherichia coli has emerged as an important host for the production of biopharmaceuticals or other industrially relevant molecules. An efficient gene editing tool is indispensable for ensuring high production levels and optimal release of target products. However, in Escherichia coli, the CRISPR-Cas9 system has been shown to achieve gene modifications with relatively low frequency. Large-scale PCR screening is required, hindering the identification of positive clones. The beta protein, which weakly binds to single-stranded DNA but tightly associates with complementary strand annealing products, offers a promising solution to this issue. In the present study, we describe a targeted and continuous gene editing strategy for the Escherichia coli genome. This strategy involves the coexpression of the beta protein alongside the CRISPR-Cas9 system, enabling a variety of genome modifications such as gene deletion and insertion with an efficiency exceeding 80 %. The integrity of beta proteins is essential for the CRISPR-Cas9/Beta-based gene editing system. In this work, the deletion of either the N- or C-terminal domain significantly impaired system efficiency. Overall, our findings established the CRISPR-Cas9/Beta system as a suitable gene editing tool for various applications in Escherichia coli.

2.
Environ Res ; 252(Pt 2): 118842, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583656

RESUMO

This study investigates the distribution of rare earth elements (REEs) within the Beijing water system, specifically examining the Yongding, Chaobai, Beiyun, Jiyun, and Daqing rivers. Results indicate that the Beiyun River exhibits the highest REE concentrations, ranging from 35.95 to 59.78 µg/mL, while the Daqing River shows the lowest concentrations, ranging from 15.79 to 17.48 µg/mL. LREEs (La to Nd) predominate with a total concentration of 23.501 µg/mL, leading to a notable LREE/HREE ratio of 7.901. Positive Ce anomalies (0.70-1.11) and strong positive Eu anomalies (1.38-2.49) were observed. The study suggests that the Beijing water system's REEs may originate from geological and anthropogenic sources, such as mining and industrial activities in neighboring regions, including Inner Mongolia. These findings underscore the importance of ongoing monitoring and effective water management strategies to address REE-related environmental concerns.

4.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36355529

RESUMO

Hyperuricemia is a metabolic disease with an increasing incidence in recent years. It is critical to identify potential technology opportunities for hyperuricemia drugs to assist drug innovation. A technology roadmap (TRM) can efficiently integrate data analysis tools to track recent technology trends and identify potential technology opportunities. Therefore, this paper proposes a systematic data-driven TRM approach to identify potential technology opportunities for hyperuricemia drugs. This data-driven TRM includes the following three aspects: layer mapping, content mapping and opportunity finding. First we deal with layer mapping.. The BERT model is used to map the collected literature, patents and commercial hyperuricemia drugs data into the technology layer and market layer in TRM. The SAO model is then used to analyze the semantics of technology and market layer for hyperuricemia drugs. We then deal with content mapping. The BTM model is used to identify the core SAO component topics of hyperuricemia in technology and market dimensions. Finally, we consider opportunity finding. The link prediction model is used to identify potential technological opportunities for hyperuricemia drugs. This data-driven TRM effectively identifies potential technology opportunities for hyperuricemia drugs and suggests pathways to realize these opportunities. The results indicate that resurrecting the pseudogene of human uric acid oxidase and reducing the toxicity of small molecule drugs will be potential opportunities for hyperuricemia drugs. Based on the identified potential opportunities, comparing the DNA sequences from different sources and discovering the critical amino acid site that affects enzyme activity will be helpful in realizing these opportunities. Therefore, this research provides an attractive option analysis technology opportunity for hyperuricemia drugs.

5.
J Chromatogr A ; 1681: 463396, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058080

RESUMO

The separation of rare earth elements by solid phase containing diglycolamide-type ligands is a hot topic. In this study, 2-[2-oxo-2-(1-pyrrolidinyl)ethoxy]acetic acid (PYRDGA) was synthesized and attached to the silica. The binding strength of SiO2@PYRDGA for rare earths showed a single increasing trend with the radius of rare earth atoms. IR and XPS spectra demonstrated that carbonyl oxygen and ether bond oxygen are binding sites for rare earth ions. SiO2@PYRDGA was used for the chromatographic separation of REEs, and the primary separation of 16 REEs was achieved at pH = 2.0 using HNO3 solution as the eluent, and La, Ce, Pr, Nd, Sm, and Eu reached the baseline separation level.


Assuntos
Metais Terras Raras , Dióxido de Silício , Éteres , Íons , Ligantes , Metais Terras Raras/análise , Oxigênio
6.
Adv Mater ; 34(47): e2207486, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36121735

RESUMO

Toll-like receptors (TLRs) and CD40-related signaling pathways represent critical bridges between innate and adaptive immune responses. Here, an immunotherapy regimen that enables co-stimulation of TLR7/8- and CD40-mediated pathways is developed. TLR7/8 agonist resiquimod (R848) derived amino lipids, RAL1 and RAL2, are synthesized and formulated into RAL-derived lipid nanoparticles (RAL-LNPs). The RAL2-LNPs show efficient CD40 mRNA delivery to DCs both in vitro (90.8 ± 2.7%) and in vivo (61.3 ± 16.4%). When combined with agonistic anti-CD40 antibody, this approach can produce effective antitumor activities in mouse melanoma tumor models, thereby suppressing tumor growth, prolonging mouse survival, and establishing antitumor memory immunity. Overall, RAL2-LNPs provide a novel platform toward cancer immunotherapy by integrating innate and adaptive immunity.


Assuntos
Melanoma , Nanopartículas , Receptor 7 Toll-Like , Animais , Camundongos , Adjuvantes Imunológicos , Antígenos CD40 , Imunoterapia , Camundongos Endogâmicos C57BL , Receptor 7 Toll-Like/agonistas , Receptores Toll-Like , Melanoma/tratamento farmacológico
7.
J Microbiol Methods ; 202: 106565, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089163

RESUMO

Cell lysates from a laboratory strain of Escherichia coli can be exploited for seamless DNA cloning in vitro, which is named the seamless ligation cloning extract (SLiCE) cloning method. The SLiCE method can incorporate DNA fragments into a vector to achieve conventional DNA cloning and is more cost-effective than commercially seamless DNA cloning kits. In this study, we found that the SLiCE extracts could easily be prepared with different methods, such as 3% Triton X-100 lysis buffer, 3% SDS lysis buffer, or freeze-thaw cycles. At high E. coli transformation efficiency, the SLiCE extracts prepared using different simple and ultra-low cost methods did not affect the DNA cloning efficiency. These results further revealed that the SLiCE cloning method can be efficiently used for seamless DNA cloning in vitro.


Assuntos
DNA , Escherichia coli , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/genética , Laboratórios , Vetores Genéticos , Plasmídeos
9.
J Control Release ; 345: 306-313, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301053

RESUMO

Cytokines are important immunotherapeutics with approved drugs for the treatment of human cancers. However, systemic administration of cytokines often fails to achieve adequate concentrations to immune cells in tumors due to dose-limiting toxicity. Thus, developing localized therapy that directly delivers immune-stimulatory cytokines to tumors may improve the therapeutic efficacy. In this study, we generated novel lipid nanoparticles (LNPs) encapsulated with mRNAs encoding cytokines including IL-12, IL-27 and GM-CSF, and tested their anti-tumor activity. We first synthesized ionizable lipid materials containing di-amino groups with various head groups (DALs). The novel DAL4-LNP effectively delivered different mRNAs in vitro to tumor cells and in vivo to tumors. Intratumoral injection of DAL4-LNP loaded with IL-12 mRNA was most potent in inhibiting B16F10 melanoma tumor growth compared to IL-27 or GM-CSF mRNAs in monotherapy. Furthermore, intratumoral injection of dual DAL4-LNP-IL-12 mRNA and IL-27 mRNA showed a synergistic effect in suppressing tumor growth without causing systematic toxicity. Most importantly, intratumoral delivery of IL-12 and IL-27 mRNAs induced robust infiltration of immune effector cells, including IFN-γ and TNF-α producing NK and CD8+ T cells into tumors. Thus, intratumoral administration of DAL-LNP loaded with IL-12 and IL-27 mRNA provides a new treatment strategy for cancer.


Assuntos
Interleucina-27 , Nanopartículas , Neoplasias , Linfócitos T CD8-Positivos , Citocinas , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Imunoterapia , Interleucina-12/genética , Lipossomos , Neoplasias/tratamento farmacológico , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico
11.
Oxid Med Cell Longev ; 2021: 7936316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925701

RESUMO

Acute pancreatitis is an inflammatory disorder of the pancreas associated with substantial morbidity and mortality, which is characterized by a rapid depletion of glutathione (GSH). Cysthionine-ß-synthase (CBS) is a key coenzyme in GSH synthesis, and its deficiency is related to a variety of clinical diseases. However, whether CBS is involved in the pathogenesis of acute pancreatitis remains unclear. First, we found that CBS was downregulated in both in vivo and in vitro AP models. The pancreatic damage and acinar cell necrosis related to CBS deficiency were significantly improved by VB 12, which stimulated clearance of reactive oxygen species (ROS) by conserving GSH. Furthermore, EX-527 (a specific inhibitor of SIRT1) exposure counteracted the protective effect of VB 12 by promoting oxidative stress and aggravating mitochondrial damage without influencing CBS, indicating that vitamin B12 regulates SIRT1 to improve pancreatical damage by activating CBS. In conclusion, we found that VB 12 protected acute pancreatitis associated with oxidative stress via CBS/SIRT1 pathway.


Assuntos
Cistationina beta-Sintase/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , Pancreatite/tratamento farmacológico , Sirtuína 1/metabolismo , Vitamina B 12/farmacologia , Animais , Cistationina beta-Sintase/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Pancreatite/metabolismo , Pancreatite/patologia , Sirtuína 1/genética , Complexo Vitamínico B/farmacologia
12.
Nat Commun ; 12(1): 7264, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907171

RESUMO

Antibodies targeting costimulatory receptors of T cells have been developed for the activation of T cell immunity in cancer immunotherapy. However, costimulatory molecule expression is often lacking in tumor-infiltrating immune cells, which can impede antibody-mediated immunotherapy. Here, we hypothesize that delivery of costimulatory receptor mRNA to tumor-infiltrating T cells will enhance the antitumor effects of antibodies. We first design a library of biomimetic nanoparticles and find that phospholipid nanoparticles (PL1) effectively deliver costimulatory receptor mRNA (CD137 or OX40) to T cells. Then, we demonstrate that the combination of PL1-OX40 mRNA and anti-OX40 antibody exhibits significantly improved antitumor activity compared to anti-OX40 antibody alone in multiple tumor models. This treatment regimen results in a 60% complete response rate in the A20 tumor model, with these mice being resistant to rechallenge by A20 tumor cells. Additionally, the combination of PL1-OX40 mRNA and anti-OX40 antibody significantly boosts the antitumor immune response to anti-PD-1 + anti-CTLA-4 antibodies in the B16F10 tumor model. This study supports the concept of delivering mRNA encoding costimulatory receptors in combination with the corresponding agonistic antibody as a strategy to enhance cancer immunotherapy.


Assuntos
Materiais Biomiméticos/administração & dosagem , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Nanopartículas/administração & dosagem , RNA Mensageiro/administração & dosagem , Linfócitos T/imunologia , Animais , Materiais Biomiméticos/química , Sistemas de Liberação de Medicamentos , Glicolipídeos/administração & dosagem , Glicolipídeos/química , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Nanopartículas/química , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Fosfolipídeos/administração & dosagem , Fosfolipídeos/química , RNA Mensageiro/química , Receptores OX40/antagonistas & inibidores , Receptores OX40/genética , Receptores OX40/imunologia , Receptores OX40/metabolismo , Linfócitos T/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
13.
Adv Mater ; 33(45): e2103131, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34541724

RESUMO

Organelles are specialized compartments, where various proteins reside and play crucial roles to maintain essential cellular structures and functions in mammalian cells. A comprehensive understanding of protein expressions and subsequent localizations at each organelle is of great benefit to the development of organelle-based therapies. Herein, a set of single or dual organelle labeling messenger RNAs (SOLAR or DOLAR) is designed as novel imaging probes, which encode fluorescent proteins with various organelle localization signals. These mRNA probes enable to visualize the protein localizations at different organelles and investigate their trafficking from ribosomal machinery to specific organelles. According to the in vitro results, SOLAR probes show organelle targeting capabilities consistent with the design. Moreover, DOLAR probes with different linkers display distinct targeting properties depending on different organelle localization signals. Additionally, these mRNA probes also exhibit organelle labeling ability in vivo when delivered by lipid nanoparticles (LNPs). Therefore, these mRNA-based probes provide a unique tool to study cell organelles and may facilitate the design of organelle-based therapies.


Assuntos
Lipossomos/química , Nanopartículas/química , Organelas/química , Sondas RNA/química , RNA Mensageiro/metabolismo , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Expressão Gênica , Humanos , Lisossomos/metabolismo , Camundongos , Microscopia Confocal , Organelas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Sondas RNA/metabolismo , RNA Mensageiro/química
14.
J Thromb Haemost ; 19(12): 3113-3125, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411418

RESUMO

BACKGROUND: Thrombosis is the pathological basis of cardiovascular and cerebrovascular diseases, which seriously threaten human life and health. Among them, nearly half of cardiovascular disease patients suffer from severe hypertension complications. Hypertension is thought to cause abnormal platelet activation and increases the risk of thrombosis, but the related mechanism is still vague. OBJECTIVES: This study hypothesized that the abnormal hemodynamics of blood under hypertension might affect platelet function and accelerate thrombosis by activating mechanoreceptor Piezo1. METHODS: To assess the activation effect of hypertension on mechanoreceptor Piezo1, we injected Piezo1 agonist Yoda1 and antagonist GsMTx-4 through the tail vein, then examined the platelet activation status and thrombosis. RESULTS: Our results displayed that antagonist GsMTx-4 effectively inhibited calcium influx caused by hypertension and agonist Yoda1. Antithrombotic studies proved that the inhibition of Piezo1 effectively inhibited arterial thrombosis and reduced the infarct size of stroke in hypertensive mice. CONCLUSIONS: Our study explains the activation of mechanoreceptor Piezo1 under hypertension is the key to abnormal platelet activation and thrombosis while providing novel platelet intervention strategies to prevent thrombosis.


Assuntos
Hipertensão , Trombose , Animais , Plaquetas/metabolismo , Cálcio/metabolismo , Humanos , Canais Iônicos , Camundongos
15.
Sci Adv ; 6(34)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32937374

RESUMO

Messenger RNA (mRNA) therapeutics have been explored to treat various genetic disorders. Lipid-derived nanomaterials are currently one of the most promising biomaterials that mediate effective mRNA delivery. However, efficiency and safety of this nanomaterial-based mRNA delivery remains a challenge for clinical applications. Here, we constructed a series of lipid-like nanomaterials (LLNs), named functionalized TT derivatives (FTT), for mRNA-based therapeutic applications in vivo. After screenings on the materials, we identified FTT5 as a lead material for efficient delivery of long mRNAs, such as human factor VIII (hFVIII) mRNA (~4.5 kb) for expression of hFVIII protein in hemophilia A mice. Moreover, FTT5 LLNs demonstrated high percentage of base editing on PCSK9 in vivo at a low dose of base editor mRNA (~5.5 kb) and single guide RNA. Consequently, FTT nanomaterials merit further development for mRNA-based therapy.


Assuntos
Nanopartículas , Pró-Proteína Convertase 9 , Animais , Edição de Genes , Lipídeos , Camundongos , RNA Mensageiro/metabolismo
16.
Adv Mater ; 32(40): e2004452, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32875709

RESUMO

SARS-CoV-2 has become a pandemic worldwide; therefore, an effective vaccine is urgently needed. Recently, messenger RNAs (mRNAs) have emerged as a promising platform for vaccination. In this work, the untranslated regions (UTRs) of mRNAs are systematically engineered in order to enhance protein production. Through a comprehensive analysis of endogenous gene expression and de novo design of UTRs, the optimal combination of 5' and 3' UTR are identified and termed NASAR, which are 5- to 10-fold more efficient than the tested endogenous UTRs. More importantly, NASAR mRNAs delivered by lipid-derived TT3 nanoparticles trigger a dramatic expression of potential SARS-CoV-2 antigens. The antigen-specific antibodies induced by TT3-nanoparticles and NASAR mRNAs are over two orders of magnitude more than that induced by the FDA-approved lipid nanoparticle material MC3 in vaccinated mice. These NASAR mRNAs merit further development as alternative SARS-CoV-2 vaccines.


Assuntos
Antígenos Virais/administração & dosagem , Betacoronavirus/imunologia , Vacinas Virais , Animais , Anticorpos Antivirais/metabolismo , Vacinas contra COVID-19 , Linhagem Celular Tumoral , Infecções por Coronavirus/prevenção & controle , Feminino , Expressão Gênica , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Nanopartículas , RNA Mensageiro , SARS-CoV-2 , Vacinação
17.
bioRxiv ; 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32511313

RESUMO

SARS-CoV-2 has rapidly become a pandemic worldwide; therefore, an effective vaccine is urgently needed. Recently, messenger RNAs (mRNAs) have emerged as a promising platform for vaccination. Here, we systematically investigated the untranslated regions (UTRs) of mRNAs in order to enhance protein production. Through a comprehensive analysis of endogenous gene expression and de novo design of UTRs, we identified the optimal combination of 5' and 3' UTR, termed as NASAR, which was five to ten-fold more efficient than the tested endogenous UTRs. More importantly, NASAR mRNAs delivered by lipid-derived nanoparticles showed dramatic expression of potential SARS-CoV-2 antigens both in vitro and in vivo. These NASAR mRNAs merit further development as alternative SARS-CoV-2 vaccines.

18.
Nat Nanotechnol ; 15(7): 615, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32346117

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Mol Ther Nucleic Acids ; 19: 1043-1052, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32045875

RESUMO

CRISPR-Cas12a (CRISPR-Cpf1) was reported to have multiple types of cleavage activities. Without the assistance of CRISPR RNA (crRNA), we investigated DNase activity and substrate specificity of Cas12a orthologs in the presence of diverse divalent metal ions. Cas12a from different species are capable of degrading single-stranded DNA (ssDNA) and/or double-stranded DNA (dsDNA), depending on the metal ions used. In spite of sharing high sequence similarity and functional domains among diverse Cas12a orthologs, only Acidaminococcus sp. Cas12a (AsCas12a) showed a predominant preference for cleaving ssDNA, but no detectable activity toward dsDNA substrate in the presence of magnesium (II) ions. In addition, we found that both AsCas12a and Francisella novicida Cas12a (FnCas12a) caused substantial dsDNA cleavage in the presence of manganese (II) ion. More importantly, the DNase activities can be inhibited by synthetic DNA oligonucleotides with phosphorothioate linkage modifications. Overall, ssDNase activity of the Cas12a orthologs uncovered a distinct approach for DNA cleavage compared with crRNA-guided dsDNA breaks, and provided insights into potential biological and therapeutic applications.

20.
Nat Nanotechnol ; 15(1): 41-46, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31907443

RESUMO

Sepsis, a condition caused by severe infections, affects more than 30 million people worldwide every year and remains the leading cause of death in hospitals1,2. Moreover, antimicrobial resistance has become an additional challenge in the treatment of sepsis3, and thus, alternative therapeutic approaches are urgently needed2,3. Here, we show that adoptive transfer of macrophages containing antimicrobial peptides linked to cathepsin B in the lysosomes (MACs) can be applied for the treatment of multidrug-resistant bacteria-induced sepsis in mice with immunosuppression. The MACs are constructed by transfection of vitamin C lipid nanoparticles that deliver antimicrobial peptide and cathepsin B (AMP-CatB) mRNA. The vitamin C lipid nanoparticles allow the specific accumulation of AMP-CatB in macrophage lysosomes, which is the key location for bactericidal activities. Our results demonstrate that adoptive MAC transfer leads to the elimination of multidrug-resistant bacteria, including Staphylococcus aureus and Escherichia coli, leading to the complete recovery of immunocompromised septic mice. Our work provides an alternative strategy for overcoming multidrug-resistant bacteria-induced sepsis and opens up possibilities for the development of nanoparticle-enabled cell therapy for infectious diseases.


Assuntos
Transferência Adotiva , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Ácido Ascórbico/uso terapêutico , Macrófagos/transplante , Sepse/terapia , Animais , Antibacterianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Ácido Ascórbico/administração & dosagem , Catepsina B/genética , Portadores de Fármacos/química , Farmacorresistência Bacteriana Múltipla , Lipídeos/química , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Células RAW 264.7 , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico , Sepse/genética , Vitaminas/administração & dosagem , Vitaminas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...