Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202413927, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304910

RESUMO

Introducing fluorinated electrolyte additives to construct LiF-rich solid-electrolyte interphase (SEI) on Si-based anodes is proven an effective strategy for coping with its massive volume changes during cycling. However, most current research on fluorine-containing additives focuses on their thermodynamics of decomposition, lacking studies on the correlation between the molecular structure of additives and their decomposition kinetics. Herein, two fluorinated ester additives, diethyl fluoromalonate (F1DEM) and diethyl 2,2-difluoromalonate (F2DEM) were designed and synthesized. Through combining a wealth of characterizations and simulations, it is revealed that despite the similar reduction thermodynamics, the favorable reduction kinetics of single-fluorinated F1DEM facilitate a LiF-rich layer during the early stage of SEI formation, contributing to the formation of a more robust SEI on SiOx anode compared to the difluorinated F2DEM. Consequently, the proposed additive achieves excellent cycling stability (84 % capacity retention after 1000 cycles) for 5 Ah 21700 cylindrical batteries under practical testing conditions. By unveiling the role of reaction kinetics, a long-overlooked aspect for the study of electrolyte additives, this work sheds light on how to construct a stable SEI on Si-based anodes.

2.
Adv Mater ; : e2408875, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39205513

RESUMO

For LiCoO2 (LCO) operated beyond 4.55 V (vs Li/Li+), it usually suffers from severe surface degradation. Constructing a robust cathode/electrolyte interphase (CEI) is effective to alleviate the above issues, however, the correlated mechanisms still remain vague. Herein, a progressively reinforced CEI is realized via constructing Zr─O deposits (ZrO2 and Li2ZrO3) on LCO surface (i.e., Z-LCO). Upon cycle, these Zr─O deposits can promote the decomposition of LiPF6, and progressively convert to the highly dispersed Zr─O─F species. In particular, the chemical reaction between LiF and Zr─O─F species further leads to the densification of CEI, which greatly reinforces its toughness and conductivity. Combining the robust CEI and thin surface rock-salt layer of Z-LCO, several benefits are achieved, including stabilizing the surface lattice oxygen, facilitating the interface Li+ transport kinetics, and enhancing the reversibility of O3/H1-3 phase transition, etc. As a result, the Z-LCO||Li cells exhibit a high capacity retention of 84.2% after 1000 cycles in 3-4.65 V, 80.9% after 1500 cycles in 3-4.6 V, and a high rate capacity of 160 mAh g-1 at 16 C (1 C = 200 mA g-1). This work provides a new insight for developing advanced LCO cathodes.

3.
Int J Cosmet Sci ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134775

RESUMO

OBJECTIVE: This research investigates how particle parameters, such as zeta potential, size, functional group, material composition, and hydrophobicity affect their affinity and deposition of particles onto hair. METHODS: Streaming potential was used as the technique for analysis. The streaming potential data obtained was then converted to surface coverage data. Scanning electron microscopy (SEM) was also done to visualize particle localization on the hair surface. RESULTS: This study found stronger particle affinity on healthy than on damaged (oxidatively bleached) hair, due to diminished interaction sites from the removal of the hair shaft's external lipid layer. SEM imaging supported these findings and offered insights into particle localization. Hydrophilic silica particles accumulated along the exposed hydrophilic cuticle edges of healthy hair, due to hydrogen bonding with the exposed endocuticle. This localization is hypothesized to be due to the limited hydrophilic binding sites on the hydrophobic healthy hair cuticle surface. In damaged hair, an abundance of hydrophilic sites across the cuticle surface results in more dispersed binding. Hydrogen bonding and electrostatic attraction were shown to be the predominant forces influencing deposition, with hydrophobic interactions playing a less influential role. The affinity studies also proved that electrostatic attractions work over a longer range and are more effective at lower particle conditions compared with hydrogen bonding which only start to play a bigger role at higher particle concentrations. Steric hindrance of bulky side groups acted as a significant repulsive force. Results also revealed that larger particles deposit poorly on both healthy and damaged hair compared with smaller ones. Compared with neutrally charged silica nanoparticles (SN-2), positively charged PMMA particles (PN+16) have a stronger affinity to healthy hair, with highly charged particles (PN+49) depositing most rapidly. CONCLUSION: This study provides a fundamental understanding of how particle-surface parameters influence their affinity to hair and how damaging hair affects deposition.


OBJECTIF: Cette étude examine comment les paramètres des particules, tels que le potentiel zêta, la taille, le groupe fonctionnel, la composition du matériau et l'hydrophobie, affectent l'affinité et le dépôt des particules sur les cheveux. MÉTHODES: Le potentiel d'écoulement a été utilisé comme technique d'analyse. Les données de potentiel d'écoulement obtenues ont ensuite été converties en données de couverture de surface. Une microscopie électronique à balayage (MEB) a également été réalisée pour visualiser la localisation des particules à la surface des cheveux. RÉSULTATS: Cette étude a mis en évidence une affinité plus forte des particules sur des cheveux sains que sur des cheveux abîmés (décolorés par oxydation), en raison de la diminution des sites d'interaction due à l'élimination de la couche lipidique externe de la tige du cheveu. L'imagerie MEB a confirmé ces résultats et a permis d'obtenir des informations sur la localisation des particules. Des particules de silice hydrophile se sont accumulées en bordure des cuticules hydrophiles exposées des cheveux sains, en raison de la liaison de l'hydrogène avec l'endocuticule exposée. Il est supposé que cette localisation est due au nombre réduit de sites de liaison hydrophiles à la surface hydrophobe saine de la cuticule capillaire. Sur des cheveux abîmés, l'abondance de sites hydrophiles sur la surface des cuticules entraîne une liaison plus dispersée. La liaison de l'hydrogène et l'attraction électrostatique se sont avérées être les forces prédominantes qui influencent le dépôt, les interactions hydrophobes jouant un rôle moins influent. Les études d'affinité ont également démontré que les attractions électrostatiques fonctionnent sur une plus longue plage et sont plus efficaces dans des conditions de concentration de particules inférieures par rapport à la liaison de l'hydrogène qui ne commence à jouer un rôle plus important qu'à des concentrations de particules plus élevées. L'entrave stérique des groupes latéraux volumineux a agi comme une force répulsive significative. Les résultats ont également révélé que les particules plus grosses se déposent faiblement sur des cheveux sains et des cheveux abîmés par rapport aux particules plus petites. Par rapport aux nanoparticules de silice à charge neutre (SN­2), les particules de PMMA à charge positive (PN+16) ont une affinité plus forte avec les cheveux sains, les particules fortement chargées (PN+49) se déposant le plus rapidement. CONCLUSION: Cette étude apporte une compréhension fondamentale de la façon dont les paramètres de la surface et des particules influencent leur affinité avec les cheveux et dans quelle mesure les cheveux abîmés affectent les dépôts.

4.
Adv Mater ; 36(36): e2407029, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39007243

RESUMO

Facing the resource and environmental pressures brought by the retiring wave of lithium-ion batteries (LIBs), direct recycling methods are considered to be the next generation's solution. However, the contradiction between limited battery life and the demand for rapidly iterating technology forces the direct recovery paradigm to shift toward "direct upcycling." Herein, a closed-loop direct upcycling strategy that converts waste current collector debris into dopants is proposed, and a highly inclusive eutectic molten salt system is utilized to repair structural defects in degraded polycrystalline LiNi0.83Co0.12Mn0.05O2 cathodes while achieving single-crystallization transformation and introducing Al/Cu dual-doping. Upcycled materials can effectively overcome the two key challenges at high voltages: strain accumulation and lattice oxygen evolution. It exhibits comprehensive electrochemical performance far superior to commercial materials at 4.6 V, especially its fast charging capability at 15 C, and an impressive 91.1% capacity retention after 200 cycles in a 1.2 Ah pouch cell. Importantly, this approach demonstrates broad applicability to various spent layered cathodes, particularly showcasing its value in the recycling of mixed spent cathodes. This work effectively bridges the gap between waste management and material performance enhancement, offering a sustainable path for the recycling of spent LIBs and the production of next-generation high-voltage cathodes.

5.
ACS Nano ; 18(26): 16982-16993, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38900971

RESUMO

The structure collapse issues have long restricted the application of polycrystalline LiNixCoyMn1-x-yO2 (NCM) at high voltages beyond 4.4 V vs Li/Li+. Herein, for LiNi0.55Co0.12Mn0.33O2 (P-NCM), rapid surface degradation is observed upon the first charge, along with serious particle fragmentation upon repeated cycles. To alleviate these issues, a surface Co enrichment strategy is proposed [i.e., Co-enriched NCM (C-NCM)], which promotes the in situ formation of a robust surface rock-salt (RS) layer upon charge, serving as a highly stable interface for effective Li+ migration. Benefiting from this stabilized surface RS layer, Li+ extraction occurs mainly through this surface RS layer, rather than along the grain boundaries (GBs), thus reducing the risk of GBs' cracking and even particle fragmentation upon cycles. Besides, O loss and TM (TM = Ni, Co, and Mn) dissolution are also effectively reduced with fewer side reactions. The C-NCM/graphite cell presents a highly reversible capacity of 205.1 mA h g-1 at 0.2 C and a high capacity retention of 86% after 500 cycles at 1 C (1 C = 200 mA g-1), which is among the best reported cell performances. This work provides a different path for alleviating particle fragmentation of NCM cathodes.

6.
Adv Mater ; 36(32): e2405519, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801117

RESUMO

Pushing intercalation-type cathode materials to their theoretical capacity often suffers from fragile Li-deficient frameworks and severe lattice strain, leading to mechanical failure issues within the crystal structure and fast capacity fading. This is particularly pronounced in layered oxide cathodes because the intrinsic nature of their structures is susceptible to structural degradation with excessive Li extraction, which remains unsolved yet despite attempts involving elemental doping and surface coating strategies. Herein, a mechanochemical strengthening strategy is developed through a gradient disordering structure to address these challenges and push the LiCoO2 (LCO) layered cathode approaching the capacity limit (256 mAh g-1, up to 93% of Li utilization). This innovative approach also demonstrates exceptional cyclability and rate capability, as validated in practical Ah-level pouch full cells, surpassing the current performance benchmarks. Comprehensive characterizations with multiscale X-ray, electron diffraction, and imaging techniques unveil that the gradient disordering structure notably diminishes the anisotropic lattice strain and exhibits high fatigue resistance, even under extreme delithiation states and harsh operating voltages. Consequently, this designed LCO cathode impedes the growth and propagation of particle cracks, and mitigates irreversible phase transitions. This work sheds light on promising directions toward next-generation high-energy-density battery materials through structural chemistry design.

7.
ACS Nano ; 18(8): 6600-6611, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353590

RESUMO

Coupling Ni-rich layered oxide cathodes with Si-based anodes is one of the most promising strategies to realize high-energy-density Li-ion batteries. However, unstable interfaces on both cathode and anode sides cause continuous parasitic reactions, resulting in structural degradation and capacity fading of full cells. Herein, lithium tetrafluoro(oxalato) phosphate is synthesized and applied as a multifunctional electrolyte additive to mitigate irreversible volume swing of the SiOx anode and suppress undesirable interfacial evolution of the LiNi0.83Co0.12Mn0.05O2 (NCM) cathode simultaneously, resulting in improved cycle life. Benefiting from its desirable redox thermodynamics and kinetics, the molecularly tailored additive facilitates matching interphases consisting of LiF, Li3PO4, and P-containing macromolecular polymer on both the NCM cathode and SiOx anode, respectively, modulating interfacial chemo-mechanical stability as well as charge transfer kinetics. More encouragingly, the proposed strategy enables 4.4 V 21700 cylindrical batteries (5 Ah) with excellent cycling stability (92.9% capacity retention after 300 cycles) under practical conditions. The key finding points out a fresh perspective on interfacial optimization for high-energy-density battery systems.

8.
Adv Mater ; 36(6): e2305748, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849022

RESUMO

The interfacial compatibility between cathodes and sulfide solid-electrolytes (SEs) is a critical limiting factor of electrochemical performance in all-solid-state lithium-ion batteries (ASSLBs). This work presents a gas-solid interface reduction reaction (GSIRR), aiming to mitigate the reactivity of surface oxygen by inducing a surface reconstruction layer (SRL) . The application of a SRL, CoO/Li2 CO3 , onto LiCoO2 (LCO) cathode results in impressive outcomes, including high capacity (149.7 mAh g-1 ), remarkable cyclability (retention of 84.63% over 400 cycles at 0.2 C), outstanding rate capability (86.1 mAh g-1 at 2 C), and exceptional stability in high-loading cathode (28.97 and 23.45 mg cm-2 ) within ASSLBs. Furthermore, the SRL CoO/Li2 CO3 enhances the interfacial stability between LCO and Li10 GeP2 S12 as well as Li3 PS4 SEs. Significantly, the experiments suggest that the GSIRR mechanism can be broadly applied, not only to LCO cathodes but also to LiNi0.8 Co0.1 Mn0.1 O2 cathodes and other reducing gases such as H2 S and CO, indicating its practical universality. This study highlights the significant influence of the surface chemistry of the oxide cathode on interfacial compatibility, and introduces a surface reconstruction strategy based on the GSIRR process as a promising avenue for designing enhanced ASSLBs.

9.
Nat Commun ; 14(1): 6048, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770484

RESUMO

As one of the most promising alternatives to graphite negative electrodes, silicon oxide (SiOx) has been hindered by its fast capacity fading. Solid electrolyte interphase (SEI) aging on silicon SiOx has been recognized as the most critical yet least understood facet. Herein, leveraging 3D focused ion beam-scanning electron microscopy (FIB-SEM) tomographic imaging, we reveal an exceptionally characteristic SEI microstructure with an incompact inner region and a dense outer region, which overturns the prevailing belief that SEIs are homogeneous structure and reveals the SEI evolution process. Through combining nanoprobe and electron energy loss spectroscopy (EELS), it is also discovered that the electronic conductivity of thick SEI relies on the percolation network within composed of conductive agents (e.g., carbon black particles), which are embedded into the SEI upon its growth. Therefore, the free growth of SEI will gradually attenuate this electron percolation network, thereby causing capacity decay of SiOx. Based on these findings, a proof-of-concept strategy is adopted to mechanically restrict the SEI growth via applying a confining layer on top of the electrode. Through shedding light on the fundamental understanding of SEI aging for SiOx anodes, this work could potentially inspire viable improving strategies in the future.

10.
ACS Appl Mater Interfaces ; 15(36): 42667-42675, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639518

RESUMO

During a practical battery manufacture process, the LiCoO2 (LCO) electrodes are usually rolled with high pressure to achieve better performance, including reducing electrode polarization, increasing compact density, enhancing mechanical toughness, etc. In this work, a high-voltage LCO (HV-LCO) is achieved via modulating a commercialized LCO with an Al/F enriched and spinel reinforced surface structure. We reveal that the rolling can more or less introduce risk of grain-boundary-cracking (GBC) inside the HV-LCO and accelerate the capacity decay when cycled at 3-4.6 V vs Li/Li+. In particular, the concept of interface structure is proposed to explain the reason for the deteriorated cycle stability. As the GBC is generated, the interface structure of HV-LCO alters from a surface spinel phase to a hybrid of surface spinel plus boundary layer phases, leading to the exposure of some the nonprotective layer phase against the electrolyte. This alternation causes serious bulk structure damage upon cycles, including expanding GBC among the primary crystals, forming intragranular cracks and inactive spinel phases inside the bulk regions, etc., eventually leading to the deteriorated cycle stability. Above all, we realize that it is far from enough to achieve a eligible high-voltage LCO via only applying surface modification. This work provides a new insight for developing more advanced LCO cathodes.

11.
Small ; 19(42): e2301834, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37340579

RESUMO

Understanding the mechanism of the rate-dependent electrochemical performance degradation in cathodes is crucial to developing fast charging/discharging cathodes for Li-ion batteries. Here, taking Li-rich layered oxide Li1.2 Ni0.13 Co0.13 Mn0.54 O2 as the model cathode, the mechanisms of performance degradation at low and high rates are comparatively investigated from two aspects, the transition metal (TM) dissolution and the structure change. Quantitative analyses combining spatial-resolved synchrotron X-ray fluorescence (XRF) imaging, synchrotron X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques reveal that low-rate cycling leads to gradient TM dissolution and severe bulk structure degradation within the individual secondary particles, and especially the latter causes lots of microcracks within secondary particles, and becomes the main reason for the fast capacity and voltage decay. In contrast, high-rate cycling leads to more TM dissolution than low-rate cycling, which concentrates at the particle surface and directly induces the more severe surface structure degradation to the electrochemically inactive rock-salt phase, eventually causing a faster capacity and voltage decay than low-rate cycling. These findings highlight the protection of the surface structure for developing fast charging/discharging cathodes for Li-ion batteries.

12.
Small ; 19(39): e2300802, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259273

RESUMO

Stable cycling of LiCoO2 (LCO) cathode at high voltage is extremely challenging due to the notable structural instability in deeply delithiated states. Here, using the sol-gel coating method, LCO materials (LMP-LCO) are obtained with bulk Mg-doping and surface LiMgPO4 /Li3 PO4 (LMP/LPO) coating. The experimental results suggest that the simultaneous modification in the bulk and at the surface is demonstrated to be highly effective in improving the high-voltage performance of LCO. LMP-LCO cathodes deliver 149.8 mAh g-1 @4.60 V and 146.1 mAh g-1 @4.65 V after 200 cycles at 1 C. For higher cut-off voltages, 4.70 and 4.80 V, LMP-LCO cathodes still achieve 144.9 mAh g-1 after 150 cycles and 136.8 mAh g-1 after 100 cycles at 1 C, respectively. Bulk Mg-dopants enhance the ionicity of CoO bond by tailoring the band centers of Co 3d and O 2p, promoting stable redox on O2- , and thus enhancing stable cycling at high cut-off voltages. Meanwhile, LMP/LPO surface coating suppresses detrimental surface side reactions while allowing facile Li-ion diffusion. The mechanism of high-voltage cycling stability is investigated by combining experimental characterizations and theoretical calculations. This study proposes a strategy of surface-to-bulk simultaneous modification to achieve superior structural stability at high voltages.

13.
Small ; 19(35): e2301360, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37162438

RESUMO

Layered transition metal oxides are promising cathode materials for sodium-ion batteries due to their high energy density and appropriate operating potential. However, the poor structural stability is a major drawback to their widespread application. To address this issue, B3+ is successfully introduced into the tetrahedral site of Na0.67 Fe0.5 Mn0.5 O2 , demonstrating the effectiveness of small-radius ion doping in improving electrochemical performance. The obtained Na0.67 Fe0.5 Mn0.5 B0.04 O2 exhibits excellent cycling performance with 88.8% capacity retention after 100 cycles at 1 C and prominent rate performance. The structure-property relationship is constructed subsequently by neutron powder diffraction, in situ X-ray diffraction and X-ray absorption spectroscopy, which reveal that the Jahn-Teller distortion and the consequent P2-P2' phase transformation are effectively mitigated because of the occupancy of B3+ at the interstitial site. Furthermore, it is found that the transition metal layers are stabilized and the transition metal dissolution are suppressed, resulting in excellent cycling performance. Besides, the prominent rate performance is attributed to the enhanced diffusion kinetics associated with the rearrangement of Na+ . This work provides novel insight into the action mechanism of interstitial site doping and demonstrates a universal approach to improve the electrochemical properties of P2-type manganese-based sodium cathode materials.

14.
ACS Nano ; 17(6): 5570-5578, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36895079

RESUMO

Effective harvest of electrochemical energy from insulating compounds serves as the key to unlocking the potential capacity from many materials that otherwise could not be exploited for energy storage. Herein, an effective strategy is proposed by employing LiCoO2, a widely commercialized positive electrode material in Li-ion batteries, as an efficient redox mediator to catalyze the decomposition of Na2CO3 via an intercalating mechanism. Differing from traditional redox mediation processes where reactions occur on the limited surface sites of catalysts, the electrochemically delithiated Li1-xCoO2 forms NayLi1-xCoO2 crystals, which act as a cation intercalating catalyzer that directs Na+ insertion-extraction and activates the reaction of Na2CO3 with carbon. Through altering the route of the mass transport process, such redox centers are delocalized throughout the bulk of LiCoO2, which ensures maximum active reaction sites. The decomposition of Na2CO3 thus accelerated significantly reduces the charging overpotential in Na-CO2 batteries; meanwhile, Na compensation can also be achieved for various Na-deficient cathode materials. Such a surface-induced catalyzing mechanism for conversion-type reactions, realized via cation intercalation chemistry, expands the boundary for material discovery and makes those conventionally unfeasible a rich source to explore for efficient utilization of chemical energy.

15.
Angew Chem Int Ed Engl ; 62(10): e202218595, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592112

RESUMO

The cathode materials work as the host framework for both Li+ diffusion and electron transport in Li-ion batteries. The Li+ diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO2 , promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (Veff ) imposed in the bulk, thus driving more Li+ extraction/insertion and making LiCoO2 exhibit superior rate capability (154 mAh g-1 at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property.

16.
Nano Lett ; 23(2): 541-549, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36594815

RESUMO

Aqueous Zn batteries (AZBs) are a promising energy storage technology, due to their high theoretical capacity, low redox potential, and safety. However, dendrite growth and parasitic reactions occurring at the surface of metallic Zn result in severe instability. Here we report a new method to achieve ultrafine Zn nanograin anodes by using ethylene glycol monomethyl ether (EGME) molecules to manipulate zinc nucleation and growth processes. It is demonstrated that EGME complexes with Zn2+ to moderately increase the driving force for nucleation, as well as adsorbs on the Zn surface to prevent H-corrosion and dendritic protuberances by refining the grains. As a result, the nanoscale anode delivers high Coulombic efficiency (ca. 99.5%), long-term cycle life (over 366 days and 8800 cycles), and outstanding compatibility with state-of-the-art cathodes (ZnVO and AC) in full cells. This work offers a new route for interfacial engineering in aqueous metal-ion batteries, with significant implications for the commercial future of AZBs.

17.
ACS Appl Mater Interfaces ; 15(1): 1167-1174, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546598

RESUMO

Modulated doping has always been a conventional and effective way to optimize thermoelectric (TE) materials. Unfavorably, the efficiency of conventional doping is always restricted by the strong interdependence of thermoelectric parameters. Here, an unconventional grain boundary doping strategy is reported to solve the above problem using commercial p-type Bi0.5Sb1.5Te3 as matrix materials. Decoupling of the three key TE parameters and large net get of the figure of merit (ZT) could be achieved in Bi0.5Sb1.5Te3 materials by introducing the gradient Cu-doped grain boundary. A high ZT of ∼1.40 at 350 K and a superior average ZT of ∼1.24 (300-475 K) are obtained in the as-prepared samples, projecting a maximum conversion efficiency of ∼8.25% at ΔT = 200 K, which are considerably greater than those of the commercial Bi0.5Sb1.5Te3 matrix and the traditional Cu-doped Bi0.5Sb1.5Te3 sample. This study gives deep insights to understand the relationships between the microstructure and the carrier/phonon transport behaviors and promotes a new strategy for improving the thermoelectric performance of commercial p-type Bi0.5Sb1.5Te3 materials.

18.
Materials (Basel) ; 15(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36431647

RESUMO

In this work, we fabricated VCp-reinforced iron-based composites (VCFCs) by adjusting the amount of Mn elements and investigated how the concentration of Mn affected the microstructural characteristics of Vanadium carbide (VC) and the texture of the iron matrix, and the influence of microstructure on tribological behaviors should be investigated. We demonstrated that VC changed from thick dendrite crystals (~50 µm) to tiny equiaxed crystals (~5 µm). Furthermore, the nucleation mechanism of VC also transformed from homogeneous nucleation to heterogeneous nucleation due to the lower Gibbs free energy of TiC and the tailoring effect of the Mn elements. In addition, γ-Fe in the FCC structure gradually increased and ascribed an increase of Mn content to the lower transformation temperature of martensite. Furtherly, particulate features and phase constitution could contribute to hardness and wear resistance. Higher hardness and excellent wear resistance occurred in the 3.0 Mn sample, which had a hardness of 869 HV and a wear rate of 1.77 × 10-6 mm3/(N·m). In addition, the adhesive wear could be the main wear mechanism in the 3.0 Mn sample, while the abrasive wear could be in the 4.5 Mn sample.

19.
Front Chem ; 10: 925603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720994

RESUMO

Biomass, a globally available resource, is a promising alternative feedstock for fossil fuels, especially considering the current energy crisis and pollution. Biomass-derived diols, such as 2,5-bis(hydroxymethyl)furan, 2,5-bis(hydroxymethyl)-tetrahydrofuran, and 1,6-hexanediol, are a significant class of monomers in the polyester industry. Therefore, the catalytic conversion of biomass to valuable diols has received extensive research attention in the field of biomass conversion and is a crucial factor in determining the development of the polyester industry. 5-Hydroxymethylfurfural (HMF) is an important biomass-derived compound with a C6-furanic framework. The hydroconversion of HMF into diols has the advantages of being simple to operate, inexpensive, environmentally friendly, safe, and reliable. Therefore, in the field of diol synthesis, this method is regarded as a promising approach with significant industrialization potential. This review summarizes recent advances in diol formation, discusses the roles of catalysts in the hydroconversion process, highlights the reaction mechanisms associated with the specificities of each active center, and provides an outlook on the challenges and opportunities associated with the research on biomass-derived diol synthesis.

20.
Nature ; 606(7913): 305-312, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676429

RESUMO

Li- and Mn-rich (LMR) cathode materials that utilize both cation and anion redox can yield substantial increases in battery energy density1-3. However, although voltage decay issues cause continuous energy loss and impede commercialization, the prerequisite driving force for this phenomenon remains a mystery3-6 Here, with in situ nanoscale sensitive coherent X-ray diffraction imaging techniques, we reveal that nanostrain and lattice displacement accumulate continuously during operation of the cell. Evidence shows that this effect is the driving force for both structure degradation and oxygen loss, which trigger the well-known rapid voltage decay in LMR cathodes. By carrying out micro- to macro-length characterizations that span atomic structure, the primary particle, multiparticle and electrode levels, we demonstrate that the heterogeneous nature of LMR cathodes inevitably causes pernicious phase displacement/strain, which cannot be eliminated by conventional doping or coating methods. We therefore propose mesostructural design as a strategy to mitigate lattice displacement and inhomogeneous electrochemical/structural evolutions, thereby achieving stable voltage and capacity profiles. These findings highlight the significance of lattice strain/displacement in causing voltage decay and will inspire a wave of efforts to unlock the potential of the broad-scale commercialization of LMR cathode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA