Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Nano Lett ; 24(20): 5937-5943, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712885

RESUMO

Advanced microelectronics in the future may require semiconducting channel materials beyond silicon. Two-dimensional (2D) semiconductors, with their atomically thin thickness, hold great promise for future electronic devices. One challenge to achieving high-performance 2D semiconductor field effect transistors (FET) is the high contact resistance at the metal-semiconductor interface. In this study, we develop a charge-transfer doping strategy with WSe2/α-RuCl3 heterostructures to achieve low-resistance ohmic contact for p-type monolayer WSe2 transistors. We show that hole doping as high as 3 × 1013 cm-2 can be achieved in the WSe2/α-RuCl3 heterostructure due to its type-III band alignment, resulting in an ohmic contact with resistance of 4 kΩ µm. Based on that, we demonstrate p-type WSe2 transistors with an on-current of 35 µA·µm-1 and an ION/IOFF ratio exceeding 109 at room temperature.

2.
iScience ; 27(5): 109594, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38665207

RESUMO

Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Recent findings suggest that Testis-Specific Protein Y-encoded-Like 2 (TSPYL2) plays a fibrogenic role in diabetes-associated renal injury. However, the role of TSPYL2 in IRI-induced kidney damage is not entirely clear. In this study, we found that the expression of TSPYL2 was upregulated in a mouse model of AKI and in the hypoxia/reoxygenation (H/R) cell model. Knockdown of TSPYL2 attenuated kidney injury after IRI. More specifically, the knockdown of TSPYL2 or aminocarboxymuconate-semialdehyde decarboxylase (ACMSD) alleviated renal IRI-induced mitochondrial dysfunction and oxidative stress in vitro and in vivo. Further investigation showed that TSPYL2 regulated SREBP-2 acetylation by inhibiting SIRT1 and promoting p300 activity, thereby promoting the transcriptional activity of ACMSD. In conclusion, TSPYL2 was identified as a pivotal regulator of IRI-induced kidney damage by activating ACMSD, which may lead to NAD+ content and the damaging response in the kidney.

3.
J Diabetes Investig ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483136

RESUMO

BACKGROUND: MiRNA let7d-5p has been recently reported to be abnormally expressed in diabetes-associated atherosclerosis (AS). However, it still remains unknown how let7d-5p contributes to the process of atherosclerosis. METHODS: Twenty fresh tissues and a total of 28 wax block specimens from carotid endarterectomy procedures were obtained from the Luoyang Central Hospital affiliated to Zhengzhou University. The expression of let7d-5p was assessed using quantitative RT-PCR (qRT-PCR). A series of in vitro experiments was used to determine the roles of let7d-5p knockdown and overexpression in vascular smooth muscle cells (VSMCs). RESULTS: We discovered that the carotid plaques from diabetic patients had lower expression levels of miR let7d-5p. In VSMCs, the expression of miRNA let7d-5p was significantly lower in high glucose conditions compared with low glucose situations. The proliferation and migration of VSMCs were also inhibited by the overexpression of let7d-5p, whereas the opposite was true when let7d-5p was inhibited, according to gain and loss of function studies. Mechanically, let7d-5p might activate the GSK3ß/ß-catenin signaling pathway via binding to the high mobility group AT-Hook 2 (HMGA2) mRNA in VSMCs. Additionally, GLP-1RA liraglutide may prevent the migration and proliferation of VSMCs by raising let7d-5p levels. CONCLUSIONS: High glucose stimulated the proliferation and migration of VSMCs by regulating the let7d-5p/HMGA2/GSK3ß/ß-catenin pathway, and liraglutide may slow atherosclerosis by increasing the levels of miR let7d-5p.

4.
Environ Geochem Health ; 46(3): 105, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441743

RESUMO

The extensive use of organic amine pesticides (OAPs) in agricultural practices has resulted in the contamination of water environments, posing threats to ecosystems and human health. This study focused on the Xiang River (XR), a representative drinking water source, as the research area to investigate the occurrence characteristics of 34 OAPs. Diphenylamine emerged as the most prevalent OAP in surface water due to industrial and agricultural activities, while cycloate dominated in sediments due to cumulative effects. Generally, the concentration of OAPs in a mixed tap water sample was lower than those in surface water samples, indicating OAPs can be removed by water plants to a certain extent. The water-sediment distribution coefficients (kd) of ΣOAPs were much less than 1 L/g, the majority of OAPs maintained relatively high concentrations in water samples instead of accumulating in sediments. Furthermore, risk assessment revealed that carbofuran showed a moderate risk to the aquatic environment, with a risk quotient of 0.23, while other OAPs presented minor risks. This study provided crucial insights for regional pesticide management and control in the XR basin, emphasizing the importance of implementing strategies to minimize the release of OAPs into the environment and protect human health.


Assuntos
Água Potável , Praguicidas , Humanos , Aminas , Ecossistema , Rios , China , Medição de Risco
5.
Ecotoxicol Environ Saf ; 275: 116249, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522286

RESUMO

The microplastic pollution in freshwater system is gradually becoming more severe, which has led to increasing attention on the distribution and potential harmful effects of microplastics. Moreover, microplastics may have an impact on river ecology and pose risks to ecosystems. Therefore, it is important to reveal this process. This study aimed to explore correlations between microplastics and free-living microorganisms in an urban drinking water source of Xiangjiang River by using multivariate statistical analysis. The results indicated that the abundance of microplastics (size 50 µm to 5 mm) in surface water and sediments ranged from 0.72 to 18.6 (mean ± SD: 7.32 ± 2.36) items L-1 and 26.3-302 (150 ± 75.6) items kg-1 dry weight (dw), respectively, suggesting potential microplastic pollution despite the protected status as a drinking water source. Higher microplastic abundances were observed in urban areas and the downstream of wastewater plants, with mostly granular shape, transparent and black color as well as 50-100 µm in size. The multivariate statistical analysis presented that the abundance of microplastics is not significantly correlated with water indicators, due to the complexity of the abundance data. The water indicators showed an obvious correlation with microplastics in colors of transparent and black, and smaller sizes of 50-100 µm. This is also true for microplastics and microorganisms in water and sediment. Proteobacteria was the main prokaryote in water and sediments, being positively correlated with 50-100 µm microplastics; while Chloroplastida was the dominated eukaryotes, presenting a weak correlation with smaller-size microplastics. Overall, when considering the properties of microplastics such as shape, color and size, the potential correlations with water indicators and microorganisms were more evident than abundance. This study provides new insights into the multivariate statistical analysis, explaining the potential correlations among microplastic properties, microorganisms and environmental factors in a river system.


Assuntos
Água Potável , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos , Qualidade da Água , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Sedimentos Geológicos
6.
Ann Nucl Med ; 38(5): 382-390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376629

RESUMO

OBJECTIVE: Accurate delineation of renal regions of interest (ROIs) is critical for the assessment of renal function in pediatric dynamic renal scintigraphy (DRS). The purpose of this study was to develop and evaluate a deep learning (DL) model that can fully automatically delineate renal ROIs and calculate renal function in pediatric 99mTechnetium-ethylenedicysteine (99mTc-EC) DRS. METHODS: This study retrospectively analyzed 1,283 pediatric DRS data at a single center from January to December 2018. These patients were divided into training set (n = 1027), validation set (n = 128), and testing set (n = 128). A fully automatic segmentation of ROIs (FASR) model was developed and evaluated. The pixel values of the automatically segmented ROIs were calculated to predict renal blood perfusion rate (BPR) and differential renal function (DRF). Precision, recall rate, intersection over union (IOU), and Dice similarity coefficient (DSC) were used to evaluate the performance of FASR model. Intraclass correlation (ICC) and Pearson correlation analysis were used to compare the consistency of automatic and manual method in assessing the renal function parameters in the testing set. RESULTS: The FASR model achieved a precision of 0.88, recall rate of 0.94, IOU of 0.83, and DSC of 0.91. In the testing set, the r values of BPR and DRF calculated by the two methods were 0.94 (P < 0.01) and 0.97 (P < 0.01), and the ICCs (95% confidence interval CI) were 0.94 (0.90-0.96) and 0.94 (0.91-0.96). CONCLUSION: We propose a reliable and stable DL model that can fully automatically segment ROIs and accurately predict renal function in pediatric 99mTc-EC DRS.


Assuntos
Aprendizado Profundo , Criança , Humanos , Estudos Retrospectivos , Rim/diagnóstico por imagem , Testes de Função Renal/métodos , Cintilografia
7.
J Cardiothorac Surg ; 19(1): 51, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311780

RESUMO

BACKGROUND: Deep sternal wound infection (DSWI) constitutes a serious complication after coronary artery bypass grafting (CABG) surgery. The aim of this study is to evaluate the dose-response relationship between glycated hemoglobin (HbA1c) level and the risk of DSWI after CABG. METHODS: PubMed, Scopus, and Cochrane Library databases were searched to identify potentially relevant articles. According to rigorous inclusion and exclusion criteria, fourteen studies including 15,570 patients were enrolled in our meta-analysis. Odds ratio (OR) with 95% confidence intervals (CIs) was used as the summary statistic. The robust-error meta-regression model was used to synthesize the dose-response relationship. RESULTS: Our meta-analysis shows that among patients undergoing CABG, preoperative elevated HbA1c was associated with the risk of developing DSWI (OR = 2.67, 95% CI 2.00-3.58) but with low prognostic accuracy (diagnostic OR = 2.70, 95% CI 1.96-3.73; area under the curve = 0.66, 95% CI 0.62-0.70) for predicting postoperative DSWI. Subgroup analyses showed the relationship became nonsignificant in patients without diabetes and studies adopting lower HbA1c thresholds. Dose-response analysis showed a significant nonlinear (p = 0.03) relationship between HbA1c and DSWI, with a significantly increased risk of DSWI when HbA1c was > 5.7%. CONCLUSIONS: An elevated HbA1c level of > 5.7% was related to a higher risk of developing DSWI after CABG, and the risk increased as the HbA1c level grew. The association between HbA1c and DSWI was nonsignificant among nondiabetic patients while significant among diabetic patients.


Assuntos
Ponte de Artéria Coronária , Diabetes Mellitus , Humanos , Hemoglobinas Glicadas , Fatores de Risco , Ponte de Artéria Coronária/efeitos adversos , Infecção da Ferida Cirúrgica/etiologia , Esterno/cirurgia , Estudos Retrospectivos
8.
EJNMMI Res ; 14(1): 20, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372908

RESUMO

BACKGROUND: In the present study, we aimed to investigate the role of baseline (B), interim (I) and end-of-treatment (Eot) 18F-FDG PET/CT in assessing the prognosis of diffuse large B cell lymphoma (DLBCL), so as to identify patients who need intensive treatment at an early stage. METHODS: A total of 127 DLBCL patients (62 men; 65 women; median age 62 years) were retrospectively analyzed in this study. Baseline (n = 127), interim (n = 127, after 3-4 cycles) and end-of-treatment (n = 53, after 6-8 cycles) PET/CT images were re-evaluated; semi-quantitative parameters such as maximum standardized uptake value of lesion-to-liver ratio (SUVmax(LLR)) and lesion-to-mediastinum ratio (SUVmax(LMR)), total metabolic tumor volume (TMTV) and total metabolic tumor volume (TLG) were recorded. ΔTLG1 was the change of interim relative to baseline TLG (I to B), ΔTLG2 (Eot to B). ΔSUVmax and ΔTMTV were the same algorithm. The visual Deauville 5-point scale (D-5PS) has been adopted as the major criterion for PET evaluation. Visual analysis (VA) and semi-quantitative parameters were assessed for the ability to predict progression-free survival (PFS) and overall survival (OS) by using Kaplan-Meier method, cox regression and logistic regression analysis. When visual and semi-quantitative analysis are combined, the result is only positive if both are positive. RESULTS: At a median follow-up of 34 months, the median PFS and OS were 20 and 32 months. The survival curve analysis showed that advanced stage and IPI score with poor prognosis, ΔSUVmax(LLR)1 < 89.2%, ΔTMTV1 < 91.8% and ΔTLG1 < 98.8%, ΔSUVmax(LLR)2 < 86.4% were significantly related to the shortening of PFS in patient (p < 0.05). ΔSUVmax(LLR)1 < 83.2% and ΔTLG1 < 97.6% were significantly correlated with the shortening of OS in patients (p < 0.05). Visual analysis showed that incomplete metabolic remission at I-PET and Eot-PET increased the risk of progress and death. In terms of predicting recurrence by I-PET, the combination of visual and semi-quantitative parameters showed higher positive predictive value (PPV) and specificity than a single index. CONCLUSION: Three to four cycles of R-CHOP treatment may be a time point for early prediction of early recurrence/refractory (R/R) patients and active preemptive treatment. Combined visual analysis with semi-quantitative parameters of 18F-FDG PET/CT at interim can improve prognostic accuracy and may allow for more precise screening of patients requiring early intensive therapy.

9.
Front Oncol ; 14: 1307992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322416

RESUMO

Introduction: An effective therapeutic method to noticeably improve the prognosis of glioma patients has not been developed thus far. MAPK-activated protein kinase 2 (MAPKAPK2) is a serine/threonine kinase, which is involved in tumorigenesis, tumor growth, metastasis, and the inflammatory process. The clinical significance and molecular function of MAPKAPK2 in glioma remain unclear. Methods: MAPKAPK2 expression in human glioma tissues was detected by immunohistochemistry and analyzed from the transcriptome sequencing data in TCGA and CGGA. Prognostic nomogram was constructed to predict the survival risk of individual patients. GO and KEGG enrichment analyses were performed to analyze the function and pathways MAPKAPK2 involved. Single-cell RNA sequencing data was used to analyze the cell types in which MAPKAPK2 was enriched. Flow cytometry was used for cell cycle and apoptosis detection. The ability of cell proliferation and migration was analyzed by CCK8 and cell migration assay, respectively. Correlation analyses were performed to analyze the relationship of MAPKAPK2 with immune infiltration, immune regulators, chemokine, and chemokine receptors. Results: MAPKAPK2 was not only aberrantly upregulated in glioma tissues but also correlated with poor clinical characteristics. Moreover, MAPKAPK2 was prevalent in isocitrate dehydrogenase (IDH) wild-type and 1p/19q non-codeletion glioma cohorts and predicted poor prognosis of glioma patients. MAPKAPK2 may be involved in cell proliferation, cell migration, DNA damage repair, and immune regulation in glioma. MAPKAPK2 was enriched in microglia/macrophages and malignant tumor cells. Further investigation into cellular function revealed that inhibiting MAPKAPK2 suppressed the proliferation and migration of glioblastoma multiforme (GBM) cells in vitro. The inhibition of MAPKAPK2 significantly induced the G1 cell cycle arrest and cell apoptosis of GBM cells. Consistent with the enriched function of MAPKAPK2 in immune regulation, MAPKAPK2 was correlated with immune cell infiltration in glioma tissues. Mechanistically, a series of immune regulators, immunomodulatory chemokine, and chemokine receptors were positively correlated with MAPKAPK2 expression. Discussion: Our findings provide evidence of the clinical relevance of MAPKAPK2 in prognosis evaluation of glioma patients and highlight the underlying significance of MAPKAPK2 in glioma therapy.

10.
Small ; : e2311478, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396159

RESUMO

Mg3 Sb2 -based alloys are attracting increasing attention due to the excellent room temperature thermoelectric properties. However, due to the presence and easy segregation of charged Mg vacancies, the carrier mobility in Mg3 Sb2 -based alloys is always severely compromised that significantly restricts the room temperature performance. General vacancy compensation strategies cannot synergistically optimize the complicated Mg3 Sb2 structures involving both interior and boundary scattering. Herein, due to the multi-functional doping effect of Nb, the electron scattering inside and across grains is significantly suppressed by inhibiting the accumulation of Mg vacancies, and leading to a smooth transmission channel of electrons. The increased Mg vacancies migration barrier and optimized interface potential are also confirmed theoretically and experimentally, respectively. As a result, a leading room temperature zT of 1.02 is achieved. This work reveals the multi-functional doping effect as an efficient approach in improving room temperature thermoelectric performance in complicated defect/interface associated Mg3 Sb2 -based alloys.

11.
Nat Nanotechnol ; 19(5): 618-623, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38286875

RESUMO

Transition metal dichalcogenide-based moiré superlattices exhibit strong electron-electron correlations, thus giving rise to strongly correlated quantum phenomena such as generalized Wigner crystal states. Evidence of Wigner crystals in transition metal dichalcogenide moire superlattices has been widely reported from various optical spectroscopy and electrical conductivity measurements, while their microscopic nature has been limited to the basic lattice structure. Theoretical studies predict that unusual quasiparticle excitations across the correlated gap between upper and lower Hubbard bands can arise due to long-range Coulomb interactions in generalized Wigner crystal states. However, the microscopic proof of such quasiparticle excitations is challenging because of the low excitation energy of the Wigner crystal. Here we describe a scanning single-electron charging spectroscopy technique with nanometre spatial resolution and single-electron charge resolution that enables us to directly image electron and hole wavefunctions and to determine the thermodynamic gap of generalized Wigner crystal states in twisted WS2 moiré heterostructures. High-resolution scanning single-electron charging spectroscopy combines scanning tunnelling microscopy with a monolayer graphene sensing layer, thus enabling the generation of individual electron and hole quasiparticles in generalized Wigner crystals. We show that electron and hole quasiparticles have complementary wavefunction distributions and that thermodynamic gaps of ∼50 meV exist for the 1/3 and 2/3 generalized Wigner crystal states in twisted WS2.

12.
Bioorg Chem ; 143: 107084, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176376

RESUMO

In the chemical investigation of Inula japonica, a total of 29 sesquiterpenoids (1-29) were obtained, including pseudoguaine-, xanthane-, eudesmane-, and 1,10-secoeudesmane-type compounds, as well as their dimers. Among them, six new dimeric sesquiterpenoids, bisinulains A-F (1-5, 7), characterized by a [4 + 2] biogenetic pathway between different sesquiterpenoid monomers were identified. Additionally, three new monomers named inulaterins A-C (13, 18 and 21) were discovered. The structures of these compounds were determined through analysis of spectroscopic data, X-ray crystallographic data, and ECD experiments. To assess their potential anti-inflammatory activities, the sesquiterpenoid dimers were tested for their ability to inhibit NO production in LPS-stimulated RAW 264.7 cells. Furthermore, the compounds that exhibited anti-inflammatory effects underwent evaluation for their anti-fibrotic potential using a TGF-ß-induced epithelial-mesenchymal transition model in A549 cells. As a result, bisinulain B (2) was screened out to significantly inhibit the production of cytokines involved in pulmonary fibrosis such as NO, α-SMA, collagen I and fibronectin.


Assuntos
Inula , Sesquiterpenos , Animais , Camundongos , Humanos , Inula/química , Estrutura Molecular , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Células A549 , Sesquiterpenos/farmacologia , Sesquiterpenos/química
13.
Nat Mater ; 23(2): 189-195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177380

RESUMO

Electron superlattices allow the engineering of correlated and topological quantum phenomena. The recent emergence of moiré superlattices in two-dimensional heterostructures has led to exciting discoveries related to quantum phenomena. However, the requirement for the moiré pattern poses stringent limitations, and its potential cannot be switched on and off. Here, we demonstrate remote engineering and on/off switching of correlated states in bilayer graphene. Employing a remote Coulomb superlattice realized by localized electrons in twisted bilayer WS2, we impose a Coulomb superlattice in the bilayer graphene with period and strength determined by the twisted bilayer WS2. When the remote superlattice is turned off, the two-dimensional electron gas in the bilayer graphene is described by a Fermi liquid. When it is turned on, correlated insulating states at both integer and fractional filling factors emerge. This approach enables in situ control of correlated quantum phenomena in two-dimensional materials hosting a two-dimensional electron gas.

14.
Sci Total Environ ; 915: 170183, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38246367

RESUMO

Converting industrial sludge into catalytic materials for water purification is a promising approach to simultaneously realize effective disposal of sludge and resource of water. However, manipulating the high efficiency remains a huge challenge due to the difficulty in the active sites control of the sludge. Herein, we proposed a constitutive modulation strategy by the combination of hydrothermal and pyrolysis (HTP) for the fabrication of defects-assistant Fe containing sludge-derived carbon catalysts on upgrading performance in peroxymonosulfate (PMS) activation for pollutant degradation. Adjustable defects on dyeing sludge-derived carbon catalysts (DSCC) were achieved by introducing oxygen or nitrogen functional precursors (hydroquinone or p-phenylenediamine) during hydrothermal processes and by further pyrolysis, where O was detrimental while N was beneficial to defect generation. Compared to the DSCC with less defects (DHSC-O), the defect-rich sample (DHSC-2N) exhibited superior catalytic performance of PMS activation for bisphenol A (BPA) elimination (k = 0.45 min-1, 2.52 times of DHSC-O), as well as 81.4% total organic carbon (TOC) removal. Meanwhile, the degradation capacity was verified in wide pH range (2.1-8.1) and various aqueous matrices, reflecting the excellent adaptability and anti-interference performance. Furthermore, the continuous-flow experiments on industrial wastewater showed synchronous BPA and chemical oxygen demand (COD) removal, implying great potential for practical application. Solid electron paramagnetic resonance (EPR) and 57Fe Mösssbauer spectra analysis indicated that the defects acted as secondary active sites for Fe sites, which were beneficial to accelerating the electron transfer process. The only Fe active sites preferred the radical pathway. The controllable reaction tendency provides possibilities for the on-demand design of sludge-based catalysts to meet the requirements of practical wastewater treatment under Fenton-like reaction.

15.
Adv Mater ; 36(9): e2305032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37724482

RESUMO

The perception of object's deformability in unstructured interactions relies on both kinesthetic and cutaneous cues to adapt the uncertainties of an object. However, the existing tactile sensors cannot provide adequate cutaneous cues to self-adaptively estimate the material softness, especially in non-standard contact scenarios where the interacting object deviates from the assumption of an elastic half-infinite body. This paper proposes an innovative design of a tactile sensor that integrates the capabilities of two slow-adapting mechanoreceptors within a soft medium, allowing self-decoupled sensing of local pressure and strain at specific locations within the contact interface. By leveraging these localized cutaneous cues, the sensor can accurately and self-adaptively measure the material softness of an object, accommodating variations in thicknesses and applied forces. Furthermore, when combined with a kinesthetic cue from the robot, the sensor can enhance tactile expression by the synergy of two relevant deformation attributes, including material softness and compliance. It is demonstrated that the biomimetic fusion of tactile information can fully comprehend the deformability of an object, hence facilitating robotic decision-making and dexterous manipulation.


Assuntos
Biomimética , Robótica , Mecanorreceptores , Percepção
16.
Cell Mol Life Sci ; 81(1): 13, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157020

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal and devastating lung disease of unknown etiology, described as the result of multiple cycles of epithelial cell injury and fibroblast activation. Despite this impressive increase in understanding, a therapy that reverses this form of fibrosis remains elusive. In our previous study, we found that miR-29b has a therapeutic effect on pulmonary fibrosis. However, its anti-fibrotic mechanism is not yet clear. Recently, our study identified that F-Actin Binding Protein (TRIOBP) is one of the target genes of miR-29b and found that deficiency of TRIOBP increases resistance to lung fibrosis in vivo. TRIOBP knockdown inhibited the proliferation of epithelial cells and attenuated the activation of fibroblasts. In addition, deficiency of Trio Rho Guanine Nucleotide Exchange Factor (TRIO) in epithelial cells and fibroblasts decreases susceptibility to lung fibrosis. TRIOBP interacting with TRIO promoted abnormal epithelial-mesenchymal crosstalk and modulated the nucleocytoplasmic translocation of ß-catenin. We concluded that the miR-29b‒TRIOBP-TRIO-ß-catenin axis might be a key anti-fibrotic axis in IPF to regulate lung regeneration and fibrosis, which may provide a promising treatment strategy for lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Animais , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética
17.
Plants (Basel) ; 12(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005693

RESUMO

Streptomyces alfalfa strain 11F has inhibitory effects on many phytopathogenic fungi and improves the establishment and biomass yield of switchgrass. However, the antagonistic effects of strain 11F on Fusarium wilt of watermelon and its secondary metabolites that contribute to its biocontrol activity are poorly understood. We evaluated the antagonistic and growth-promoting effects of strain 11F and conducted a transcriptome analysis to identify the metabolites contributing to antifungal activity. Strain 11F had marked inhibitory effects on six fungal pathogens. The incidence of Fusarium wilt of watermelon seedlings was decreased by 46.02%, while watermelon seedling growth was promoted, as indicated by plant height (8.7%), fresh weight (23.1%), and dry weight (60.0%). Clean RNA-sequencing data were annotated with 7553 functional genes. The 2582 differentially expressed genes (DEGs) detected in the Control vs. Case 2 comparison were divided into 42 subcategories of the biological process, cellular component, and molecular function Gene Ontology categories. Seven hundred and forty functional genes (55.47% of the DEGs) were assigned to Kyoto Encyclopedia of Genes and Genomes metabolic pathways, reflecting the complexity of the strain 11F metabolic regulatory system. The expression level of the gene phzF, which encodes an enzyme essential for phenazine-1-carboxylic acid (PCA) synthesis, was downregulated 3.7-fold between the 24 h and 48 h fermentation time points, suggesting that strain 11F can produce phenazine compounds. A phenazine compound from 11F was isolated and identified as phenazine-1-carboxamide (PCN), which contributed to the antagonistic activity against Fusarium oxysporum f. sp. niveum. PCA was speculated to be the synthetic precursor of PCN. The downregulation in phzF expression might be associated with the decrease in PCA accumulation and the increase in PCN synthesis in strain 11F from 24 to 48 h. Streptomyces alfalfae 11F protects watermelon seedlings from Fusarium wilt of watermelon and promotes seedling growth. The transcriptome analysis of strain 11F provides insights into the synthesis of PCN, which has antifungal activity against F. oxysporum f. sp. niveum of watermelon.

18.
Front Chem ; 11: 1238424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711316

RESUMO

Phytoremediation techniques have been widely used in the treatment of heavy metal contaminated soils in recent years, but there is no effective post-treatment method for plant tissues containing heavy metals after remediation. Elsholtzia Harchowensis is a copper hyperaccumulator, commonly distributed in copper mining areas and often used for soil remediation of mine tailings. Moreover, copper-based catalysts are widely used in electrocatalytic reduction of carbon dioxide, which aims to convert carbon dioxide into useful fuels or chemicals. In this study, copper-modified biochar was prepared from Elsholtzia Harchowensis. Its specific surface area can reach as high as 1202.9 m2/g, with a certain porous structure and even distribution of copper on the amorphous carbon. Various products (such as carbon monoxide, methane, ethanol, and formic acid) could be obtained from the electrolytic reduction of carbon dioxide by using the as-prepared catalyst. Instantaneous current density of up to 15.3 mA/cm2 were achieved in 1.0 M KHCO3 solution at a potential of -0.82 V (vs. RHE). Electrolysis at a potential of -0.32 V (vs. RHE) for 8 h resulted in a stable current of about 0.25 mA/cm2, and the Faraday efficiency (FE) of carbon monoxide can reach as high as 74.6%. In addition, electrolysis at a potential of -0.52 V (vs. RHE) for 8 h led to a stable current of about 2.2 mA/cm2 and a FE of 8.7% for the C2 product. The rich variety of elements in plants leads to catalysts with complex structural and elemental characteristics as well, which facilitates the electrolytic reduction of carbon dioxide with a variety of useful products.

19.
Adv Sci (Weinh) ; 10(28): e2303338, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541312

RESUMO

The application of stretchable strain sensors in human movement recognition, health monitoring, and soft robotics has attracted wide attention. Compared with traditional electronic conductors, stretchable ionic hydrogels are more attractive to organization-like soft electronic devices yet suffer poor sensitivity due to limited ion conduction modulation caused by their intrinsic soft chain network. This paper proposes a strategy to modulate ion transport behavior by geometry-induced strain concentration to adjust and improve the sensitivity of ionic hydrogel-based strain sensors (IHSS). Inspired by the phenomenon of vehicles slowing down and changing lanes when the road narrows, the strain redistribution of ionic hydrogel is optimized by structural and mechanical parameters to produce a strain-induced resistance boost. As a result, the gauge factor of the IHSS is continuously tunable from 1.31 to 9.21 in the strain range of 0-100%, which breaks through the theoretical limit of homogeneous strain-distributed ionic hydrogels and ensures a linear electromechanical response simultaneously. Overall, this study offers a universal route to modulate the ion transport behavior of ionic hydrogels mechanically, resulting in a tunable sensitivity for IHSS to better serve different application scenarios, such as health monitoring and human-machine interface.

20.
In Vivo ; 37(5): 2044-2056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37652484

RESUMO

BACKGROUND/AIM: CBLB502, a Toll-like receptor-5 agonist derived from Salmonella flagellin, exerts protective roles against irradiation and chemical drugs in mammalian tissues and stimulates tissue regeneration. This study aimed to investigate whether CBLB502 can protect against liver and kidney damage induced by the chemotherapeutic drug cisplatin (CDDP) and the underlying mechanism of the protective effect. MATERIALS AND METHODS: Mice were pretreated with CBLB502 [0.2 mg/kg, intraperitoneal (i.p.) injection] 0.5 h prior to administration of CDDP (20 mg/kg, i.p. injection), and analyses of the liver and kidney indices, blood biochemistry, and histopathology were performed. RESULTS: Pretreatment with CBLB502 alleviated CDDP-induced liver and kidney damage. RNA sequencing and bioinformatic analysis indicated that CDDP induced a similar damage-promoting gene regulation pattern in the liver and kidney. CBLB502 protected against liver and kidney damage only after CDDP treatment primarily via different pathways. However, some CBLB502-regulated genes were common between the liver and kidney, including those involved in blood coagulation, fibrinolysis, hemostasis, apoptotic regulation, NF-kappaB signaling, and response to lipopolysaccharide, suggesting a general protective effect by CBLB502. CONCLUSION: Our data provide insights into the protective mechanism of CBLB502 against CDDP-induced tissue damage in the liver and kidney and might provide a basis for future studies on functional genes and regulatory mechanisms that mediate protection against chemoradiotherapy-induced damage.


Assuntos
Cisplatino , Fígado , Animais , Camundongos , Cisplatino/efeitos adversos , Adjuvantes Imunológicos , Rim , Receptores Toll-Like , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...