Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(12): 8683-8693, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465942

RESUMO

Distinctive subpopulations of circulating tumor cells (CTCs) with increased motility are considered to possess enhanced tumor-initiating potential and contribute to metastasis. Single-cell analysis of the migratory CTCs may increase our understanding of the metastatic process, yet most studies are limited by technical challenges associated with the isolation and characterization of these cells due to their extreme scarcity and heterogeneity. We report a microfluidic method based on CTCs' chemotactic motility, termed as CTC-Race assay, that can analyze migrating CTCs from metastatic non-small-cell lung cancer (NSCLC) patients with advanced tumor stages and enable concurrent biophysical and biochemical characterization of them with single-cell resolution. Analyses of motile CTCs in the CTC-Race assay, in synergy with other single cell characterization techniques, could provide insights into cancer metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Biomarcadores Tumorais
2.
Br J Cancer ; 129(7): 1083-1094, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37580442

RESUMO

BACKGROUND: Exosomes (Exos) can safely and effectively deliver therapeutic substances to glioma cells; however, their blood-brain barrier (BBB) crossing capacity remains limited. Focused ultrasound (FUS) can transiently, reversibly, and locally open the BBB, while the effects of FUS combined with Exos-miRNA on the treatment of glioma have not been explored to date. METHODS: Exos were extracted by differential centrifugation and the efficacy of miR-1208-loaded Exos combined with FUS in the treatment of glioma was detected by CCK-8, colony formation, flow cytometry, transwell and tumour xenografts assays. The METTL3-mediated regulation of IGF2BP2 on mRNA stability of NUP214 was determined by MeRIP-qPCR, half-life and RIP assays. RESULTS: We used Exos secreted by mesenchymal stem cells as carriers for the tumour suppressor gene miR-1208, and following FUS irradiation, more Exos carrying miR-1208 were allowed to pass through the BBB, and the uptake of miR-1208 in Exos by glioma cells was promoted, thereby achieving high-efficiency tumour-suppressive effects. Furthermore, the molecular mechanism underlying this effect was elucidated that miR-1208 downregulated the m6A methylation level of NUP214 mRNA by negatively regulating the expression of METTL3, thereby NUP214 expression and TGF-ß pathway activity were suppressed. CONCLUSIONS: MiR-1208-loaded Exos combined with FUS is expected to become an effective glioma treatment and deserves further clinical evaluation.


Assuntos
Exossomos , Glioma , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Barreira Hematoencefálica/metabolismo , Exossomos/metabolismo , Glioma/genética , Glioma/terapia , Glioma/metabolismo , Células-Tronco Mesenquimais/metabolismo , Metiltransferases , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
FASEB J ; 37(4): e22848, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36906285

RESUMO

Temozolomide (TMZ), the primary drug for glioma treatment, has limited treatment efficacy. Additionally, considerable evidence shows that isocitrate dehydrogenase 1 mutation-type (IDH1 mut) gliomas have a better response to TMZ than isocitrate dehydrogenase 1 wildtype (IDH1 wt) gliomas. Here, we aimed to identify potential mechanisms underlying this phenotype. Herein, the Cancer Genome Atlas bioinformatic data and 30 clinical samples from patients were analyzed to reveal the expression level of cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT) Enhancer Binding Protein Beta (CEBPB) and prolyl 4-hydroxylase subunit alpha 2 (P4HA2) in gliomas. Next, cellular and animal experiments, including cell proliferation, colony formation, transwell, CCK-8, and xenograft assays, were performed to explore the tumor-promoting effects of P4HA2 and CEBPB. Then, chromatin immunoprecipitation (ChIP) assays were used to confirm the regulatory relationships between them. Finally, a co-immunoprecipitation (Co-IP) assay was performed to confirm the effect of IDH1-132H to CEBPB proteins. We found that CEBPB and P4HA2 expression was significantly upregulated in IDH1 wt gliomas and associated with poor prognosis. CEBPB knockdown inhibited the proliferation, migration, invasion, and temozolomide resistance of glioma cells and hindered the growth of glioma xenograft tumors. CEBPE, as a transcription factor, exerted its function by transcriptionally upregulating P4HA2 expression in glioma cells. Importantly, CEBPB is prone to ubiquitin-proteasomal degradation in IDH1 R132H glioma cells. We also demonstrated that both genes are related to collagen synthesis, as confirmed by in vivo experiments. Thus, CEBPE promotes proliferation and TMZ resistance by inducing P4HA2 expression in glioma cells and offers a potential therapeutic target for glioma treatment.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Glioma , Prolil Hidroxilases , Animais , Humanos , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Proliferação de Células , Glioma/metabolismo , Isocitrato Desidrogenase/genética , Mutação , Temozolomida/farmacologia , Prolil Hidroxilases/genética
4.
Eur J Pharmacol ; 940: 175391, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36400161

RESUMO

Epilepsy is a chronic disease that affects a wide range of people. Furthermore, a third of patients suffering from epileptic seizures do not respond to antiepileptic drugs. In recent years, increasing attention has focused on the role of oxidative stress in acquired epilepsy, and adjuvant antiepileptic drugs to reduce oxidative stress may be a new therapeutic strategy. In this study ginsenoside Rh2 was resistant to oxidative stress induced by epileptic activity in vivo and in vitro. Using online databases, we identified forkhead box O3a (FOXO3a) overexpression in epilepsy tissue and validated this in vitro, in vivo, and in clinical tissues of patients with epilepsy. An in vitro epilepsy model revealed that the overexpression of FOXO3a led to more severe oxidative stress, while the knockdown of FOXO3a had a protective effect on SH-SY5Y cells. Moreover, our results showed that the positive effect of FOXO3a on oxidative stress was caused by the transcriptional activation of Kelch-like ECH-associated protein 1 (KEAP1), a negative regulator of nuclear factor erythroid 2-related factor 2 (NRF2). We also found that ginsenoside Rh2 can directly inhibit the activation of FOXO3a by selectively blocking CREB-binding protein (CBP)/p300-mediated FOXO3a acetylation and play a role in regulating the KEAP1-NRF2 pathway to resist oxidative stress.


Assuntos
Epilepsia , Neuroblastoma , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/farmacologia , Acetilação , Anticonvulsivantes/farmacologia , Estresse Oxidativo , Epilepsia/tratamento farmacológico
5.
Neuropathol Appl Neurobiol ; 49(1): e12850, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36168302

RESUMO

OBJECTIVES: Several reports suggest that epigenetic therapy may be a potential method for treating epilepsy, and circular RNAs (circRNAs) play important roles in mediating the epigenetic mechanisms associated with epilepsy; however, currently there are no effective treatment methods to prevent the progression of epileptogenesis. The circRNA serine/arginine repetitive matrix 4 (circSRRM4) was found to exert regulatory effects in temporal lobe epilepsy (TLE); however, the mechanisms involved are still unknown. MATERIALS AND METHODS: To elucidate the molecular mechanism of circSRRM4, we investigated human epileptic brain tissue, epileptic rats, neuron and astrocyte cell lines using RT-qPCR, western blot, fluorescence in situ hybridisation, immunofluorescence staining, Nissl stain, micro-PET-CT, RNA-pulldown, liquid chromatography-mass spectrometry, and RBP immunoprecipitation techniques. Furthermore, we evaluated the pyruvate kinase M1/2 (PKM) expression patterns in the human and rat models of TLE. RESULTS: We detected the increased circSRRM4 expression in the hypometabolic lesions of patients with TLE and discovered that circSrrm4 has specific spatiotemporal characteristics in rats with kainic acid-induced epilepsy. The decreased PKM1 expression and increased PKM2 expression were similar to the Warburg effect in tumours. Notably, circSrrm4 silencing reduced the incidence and frequency of epilepsy, improved local hypometabolism, and prevented neuronal loss and astrocyte activation. CONCLUSION: PKM2 promotes lactic acid production in the astrocytes by inducing glycolysis, thereby contributing to the energy source for epileptic seizures. Notably, circSRRM4 combines with and inhibits serine and arginine rich splicing factor 3 (SRSF3) from joining the ubiquitin-proteasome pathway, improving the SRSF3-regulated alternative splicing of PKM, and consequently stimulating glycolysis in cells.


Assuntos
Processamento Alternativo , Epilepsia do Lobo Temporal , Animais , Humanos , Ratos , Arginina , Glucose , Proteínas do Tecido Nervoso , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , RNA Circular , Fatores de Processamento de Serina-Arginina
6.
Oncogene ; 41(40): 4512-4523, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36038663

RESUMO

Dysregulation of pseudogenes, enhancement of fatty acid synthesis and formation of immunosuppressive microenvironment are important factors that promote the malignant progression of glioma. It is of great significance to search for the molecular mechanism of interaction between the three and then perform targeted interference for improving the treatment of glioma. In this study, we found that pseudogene transmembrane protein 198B (TMEM198B) was highly expressed in glioma tissues and cell lines, and it could promote malignant progression of glioma by regulating lipid metabolism reprogramming and remodeling immune microenvironment. Applying the experimental methods of gene interference, lipidomics and immunology, we further confirmed that TMEM198B promoted PLAG1 like zinc finger 2 (PLAGL2) expression by mediating tri-methylation of histone H3 on lysine 4 (H3K4me3) of PLAGL2 through binding to SET domain containing 1B (SETD1B). Increased PLAGL2 could transcriptional activate ATP citrate lyase (ACLY) and ELOVL fatty acid elongase 6 (ELOVL6) expression, and then influenced the biological behaviors of glioma cells via enhancing the de novo lipogenesis and fatty acid acyl chain elongation. At the same time, TMEM198B promoted macrophages lipid accumulation and intensification of fatty acid oxidation (FAO) through glioma-derived exosomes (GDEs), further induced macrophages to M2 polarization, which subsequently facilitated immune escape of glioma cells. In conclusion, our present study clarifies that the TMEM198B/PLAGL2/ACLY/ELOVL6 pathway conducts crucial regulatory effects on the malignant progression of glioma, which provides novel targets and new ideas for molecular targeted therapy and immunotherapy of glioma.


Assuntos
Glioma , Metabolismo dos Lipídeos , Pseudogenes , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Proteínas de Ligação a DNA/genética , Elongases de Ácidos Graxos , Ácidos Graxos , Glioma/genética , Histonas/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos , Lisina/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Microambiente Tumoral
7.
Lab Chip ; 21(18): 3583-3597, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34346469

RESUMO

Profiling circulating tumour cells (CTCs) in cancer patients' blood samples is critical to understand the complex and dynamic nature of metastasis. This task is challenged by the fact that CTCs are not only extremely rare in circulation but also highly heterogeneous in their molecular programs and cellular functions. Here we report a combinational approach for the simultaneous biochemical and functional phenotyping of patient-derived CTCs, using an integrated inertial ferrohydrodynamic cell separation (i2FCS) method and a single-cell microfluidic migration assay. This combinatorial approach offers unique capability to profile CTCs on the basis of their surface expression and migratory characteristics. We achieve this using the i2FCS method that successfully processes whole blood samples in a tumor cell marker and size agnostic manner. The i2FCS method enables an ultrahigh blood sample processing throughput of up to 2 × 105 cells s-1 with a blood sample flow rate of 60 mL h-1. Its short processing time (10 minutes for a 10 mL sample), together with a close-to-complete CTC recovery (99.70% recovery rate) and a low WBC contamination (4.07-log depletion rate by removing 99.992% of leukocytes), results in adequate and functional CTCs for subsequent studies in the single-cell migration device. For the first time, we employ this new approach to query CTCs with single-cell resolution in accordance with their expression of phenotypic surface markers and migration properties, revealing the dynamic phenotypes and the existence of a high-motility subpopulation of CTCs in blood samples from metastatic lung cancer patients. This method could be adopted to study the biological and clinical value of invasive CTC phenotypes.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Contagem de Células , Linhagem Celular Tumoral , Separação Celular , Humanos , Dispositivos Lab-On-A-Chip
8.
Lab Chip ; 21(14): 2738-2750, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34018527

RESUMO

Rapid and label-free separation of target cells from biological samples provided unique opportunity for disease diagnostics and treatment. However, even with advanced technologies for cell separation, the limited throughput, high cost and low separation resolution still prevented their utility in separating cells with well-defined physical features from a large volume of biological samples. Here we described an ultrahigh-throughput microfluidic technology, termed as inertial-ferrohydrodynamic cell separation (inertial-FCS), that rapidly sorted through over 60 milliliters of samples at a throughput of 100 000 cells per second in a label-free manner, differentiating the cells based on their physical diameter difference with ∼1-2 µm separation resolution. Through the integration of inertial focusing and ferrohydrodynamic separation, we demonstrated that the resulting inertial-FCS devices could separate viable and expandable circulating tumor cells from cancer patients' blood with a high recovery rate and high purity. We also showed that the devices could enrich lymphocytes directly from white blood cells based on their physical morphology without any labeling steps. This label-free method could address the needs of high throughput and high resolution cell separation in circulating tumor cell research and adoptive cell transfer immunotherapy.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Separação Celular , Contagem de Eritrócitos , Humanos , Leucócitos , Microfluídica
9.
Lab Chip ; 21(9): 1706-1723, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33720269

RESUMO

Methods to separate circulating tumor cells (CTCs) from blood samples were intensively researched in order to understand the metastatic process and develop corresponding clinical assays. However current methods faced challenges that stemmed from CTCs' heterogeneity in their biological markers and physical morphologies. To this end, we developed integrated ferrohydrodynamic cell separation (iFCS), a scheme that separated CTCs independent of their surface antigen expression and physical characteristics. iFCS integrated both diamagnetophoresis of CTCs and magnetophoresis of blood cells together via a magnetic liquid medium, ferrofluid, whose magnetization could be tuned by adjusting its magnetic volume concentration. In this paper, we presented the fundamental theory of iFCS and its specific application in CTC separation. Governing equations of iFCS were developed to guide its optimization process. Three critical parameters that affected iFCS's cell separation performance were determined and validated theoretically and experimentally. These parameters included the sample flow rate, the volumetric concentration of magnetic materials in the ferrofluid, and the gradient of the magnetic flux density. We determined these optimized parameters in an iFCS device that led to a high recovery CTC separation in both spiked and clinical samples.


Assuntos
Células Neoplásicas Circulantes , Contagem de Células , Linhagem Celular Tumoral , Separação Celular , Humanos
10.
ACS Biomater Sci Eng ; 7(1): 350-359, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33320530

RESUMO

Animal models are frequently used in drug discovery because they represent a mammalian in vivo model system, they are the closest approximation to the human brain, and experimentation in humans is not ethical. Working with postmortem human brain samples is challenging and developing human in vitro systems, which mimic the in vivo human brain, has been challenging. However, the use of animal models in drug discovery for human neurological diseases is currently under scrutiny because data from animal models has come with variations due to genetic differences. Evidence from the literature suggests that techniques to reconstruct multiple neurotransmission projections, which characterize neurological disease circuits in humans, in vitro, have not been demonstrated. This paper presents a multicompartment microdevice for patterning neurospheres and specification of neural stem cell fate toward networks of multiple neuronal phenotypes. We validated our design by specification of human neural stem cells to dopaminergic and GABAergic neurons in different compartments of the device, simultaneously. The neurospheres formed unrestricted robust neuronal circuits between arrays of neurospheres in all compartments of the device. Such a device design may provide a basis for formation of multineurotransmission circuits to model functional connectivity between specific human brain regions, in vitro, using human-derived neural stem cells. This work finds relevance in neurological disease modeling and drug screening using human cell-based assays and may provide the impetus for shifting from animal-based models.


Assuntos
Dispositivos Lab-On-A-Chip , Células-Tronco Neurais , Animais , Encéfalo , Dopamina , Humanos , Neurônios
11.
Lab Chip ; 20(17): 3187-3201, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32844860

RESUMO

Isolation of exosomes from biological samples provides a minimally-invasive alternative for basic understanding, diagnosis, and prognosis of metastatic cancers. The biology and clinical values of exosomes are under intensive investigation, yet most studies are limited by technical challenges in recovering these exosomes with heterogeneous sizes and cargos from biological samples. We report a novel method based on "particle ferrohydrodynamics" and its associated microfluidic device, termed as the FerroChip, which can separate exosome-like nanoparticles from microliters of cell culture media and human serum in a label-free, continuous-flow and size-dependent manner, and achieves a high recovery rate (94.3%) and a high purity (87.9%). Separated exosome-like nanoparticles had diameters, morphology, and protein expressions that were consistent with other reports. This method, upon further molecular characterization, could potentially facilitate basic understanding of exosomes and its clinical application in blood liquid biopsy.


Assuntos
Exossomos , Nanopartículas , Neoplasias , Humanos , Dispositivos Lab-On-A-Chip , Biópsia Líquida
12.
FASEB J ; 33(11): 11973-11992, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31398290

RESUMO

Invasive spread of glioblastoma (GBM) is linked to changes in chondroitin sulfate (CS) proteoglycan (CSPG)-associated sulfated glycosaminoglycans (GAGs) that are selectively up-regulated in the tumor microenvironment (TME). We hypothesized that inhibiting CS-GAG signaling in the TME would stem GBM invasion. Rat F98 GBM cells demonstrated enhanced preferential cell invasion into oversulfated 3-dimensional composite of CS-A and CS-E [4- and 4,6-sulfated CS-GAG (COMP)] matrices compared with monosulfated (4-sulfated) and unsulfated hyaluronic acid matrices in microfluidics-based choice assays, which is likely influenced by differential GAG receptor binding specificities. Both F98 and human patient-derived glioma stem cells (GSCs) demonstrated a high degree of colocalization of the GSC marker CD133 and CSPGs. The small molecule sulfated GAG antagonist bis-2-methyl-4-amino-quinolyl-6-carbamide (surfen) reduced invasion and focal adhesions in F98 cells encapsulated in COMP matrices and blocked CD133 and antichondroitin sulfate antibody (CS-56) detection of respective antigens in F98 cells and human GSCs. Surfen-treated F98 cells down-regulated CSPG-binding receptor transcripts and protein, as well as total and activated ERK and protein kinase B. Lastly, rats induced with frontal lobe tumors and treated with a single intratumoral dose of surfen demonstrated reduced tumor burden and spread compared with untreated controls. These results present a first demonstration of surfen as an inhibitor of sulfated GAG signaling to stem GBM invasion.-Logun, M. T., Wynens, K. E., Simchick, G., Zhao, W., Mao, L., Zhao, Q., Mukherjee, S., Brat, D. J., Karumbaiah, L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion.


Assuntos
Movimento Celular/efeitos dos fármacos , Sulfatos de Condroitina/antagonistas & inibidores , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Ureia/análogos & derivados , Antígeno AC133/metabolismo , Animais , Linhagem Celular Tumoral , Sulfatos de Condroitina/metabolismo , Glioblastoma/patologia , Glioma/metabolismo , Glioma/patologia , Glicosaminoglicanos/antagonistas & inibidores , Glicosaminoglicanos/metabolismo , Humanos , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Ureia/farmacologia
13.
Lab Chip ; 19(10): 1860-1876, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31041975

RESUMO

Isolation of circulating tumor cells (CTCs) from blood provides a minimally-invasive alternative for basic understanding, diagnosis, and prognosis of metastatic cancer. The roles and clinical values of CTCs are under intensive investigation, yet most studies are limited by technical challenges in the comprehensive enrichment of intact and viable CTCs with minimal white blood cell (WBC) contamination. Here, we report a novel method based on contrast of cell magnetization in biocompatible ferrofluids (a colloidal magnetic nanoparticle suspension), termed as integrated ferrohydrodynamic cell separation (iFCS), that enriches CTCs in a tumor antigen-independent and cell size variation-inclusive manner, achieves a high throughput (12 mL h-1), high recovery rate (99.08% at down to ∼10 cells per mL spike ratio), and low WBC contamination (533 cells for every one milliliter blood processed) and is biocompatible. This method will enable large cohort research to define the clinical and diagnostic value of CTC subtypes.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias/diagnóstico , Células Neoplásicas Circulantes/imunologia , Tamanho Celular , Humanos , Leucócitos/patologia , Nanopartículas de Magnetita/química , Técnicas Analíticas Microfluídicas , Neoplasias/sangue , Neoplasias/imunologia , Células Neoplásicas Circulantes/patologia , Células Tumorais Cultivadas
14.
Adv Biosyst ; 3(1): e1800246, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32627350

RESUMO

A unique noncontact single cell manipulation technique based on the actuation of magnetic nanorods (MNRs) or clusters (MCs) by nonuniform alternating magnetic fields (nuAMFs) is demonstrated. Compared to the actuation of MNRs/MCs by conventional magnetophoresis, the motion of MNRs/MCs actuated by nuAMFs can be tuned by additional parameters including the shape of MNRs/MCs and the frequency of the applied magnetic fields. The manipulation of a single cell by an actuated MNR/MC are divided into five stages, i.e., approaching, pushing, carrying, dragging, and releasing. The interactions between the MNR/MC and the cell in these stages are investigated in detail both experimentally and numerically. Other applications of cell manipulation, such as concentrating cells at target locations and accumulating MNRs/MCs onto a single cell, are also demonstrated. The single cell manipulation system is simple, low-cost, and low-power consumption, and helps advance the state-of-the-art of single-particle manipulation.

15.
Adv Biosyst ; 2(5)2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29780878

RESUMO

Glioblastoma multiforme (GBM) is an aggressive form of brain cancer that has no effective treatments and a prognosis of only 12-15 months. Microfluidic technologies deliver microscale control of fluids and cells, and have aided cancer therapy as point-of-care devices for the diagnosis of breast and prostate cancers. However, a few microfluidic devices are developed to study malignant glioma. The ability of these platforms to accurately replicate the complex microenvironmental and extracellular conditions prevailing in the brain and facilitate the measurement of biological phenomena with high resolution and in a high-throughput manner could prove useful for studying glioma progression. These attributes, coupled with their relatively simple fabrication process, make them attractive for use as point-of-care diagnostic devices for detection and treatment of GBM. Here, the current issues that plague GBM research and treatment, as well as the current state of the art in glioma detection and therapy, are reviewed. Finally, opportunities are identified for implementing microfluidic technologies into research and diagnostics to facilitate the rapid detection and better therapeutic targeting of GBM.

16.
Proc Inst Mech Eng H ; 232(6): 597-604, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29687748

RESUMO

Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed and its performance demonstrated.


Assuntos
Artefatos , Fenômenos Magnéticos , Imageamento por Ressonância Magnética , Gadolínio , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Razão Sinal-Ruído
17.
Langmuir ; 33(45): 13000-13007, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29043824

RESUMO

Droplet interface bilayer (DIB) networks allow for the construction of stimuli-responsive, membrane-based materials. Traditionally used for studying cellular transport phenomena, the DIB technique has proven its practicality when creating structured droplet networks. These structures consist of aqueous compartments capable of exchanging their contents across membranous barriers in a regulated fashion via embedded biomolecules, thus approximating the activity of natural cellular systems. However, lipid bilayer networks are often static and incapable of any reconfiguration in their architecture. In this study, we investigate the incorporation of a magnetic fluid or ferrofluid within the droplet phases for the creation of magnetically responsive DIB arrays. The impact of adding ferrofluid to the aqueous phases of the DIB networks is assessed by examining the bilayers' interfacial tensions, thickness, and channel activity. Once compatibility is established, potential applications of the ferrofluid-enabled DIBs are showcased by remotely modifying membrane qualities through magnetic fields. Ferrofluids do not significantly alter the bilayers' properties or functionality and can therefore be safely embedded within the DIB platform, allowing for remote manipulation of the interfacial bilayer properties.

18.
Lab Chip ; 17(18): 3097-3111, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28809987

RESUMO

Circulating tumor cells (CTCs) have significant implications in both basic cancer research and clinical applications. To address the limited availability of viable CTCs for fundamental and clinical investigations, effective separation of extremely rare CTCs from blood is critical. Ferrohydrodynamic cell separation (FCS), a label-free method that conducted cell sorting based on cell size difference in biocompatible ferrofluids, has thus far not been able to enrich low-concentration CTCs from cancer patients' blood because of technical challenges associated with processing clinical samples. In this study, we demonstrated the development of a laminar-flow microfluidic FCS device that was capable of enriching rare CTCs from patients' blood in a biocompatible manner with a high throughput (6 mL h-1) and a high rate of recovery (92.9%). Systematic optimization of the FCS devices through a validated analytical model was performed to determine optimal magnetic field and its gradient, ferrofluid properties, and cell throughput that could process clinically relevant amount of blood. We first validated the capability of the FCS devices by successfully separating low-concentration (∼100 cells per mL) cancer cells using six cultured cell lines from undiluted white blood cells (WBCs), with an average 92.9% cancer cell recovery rate and an average 11.7% purity of separated cancer cells, at a throughput of 6 mL per hour. Specifically, at ∼100 cancer cells per mL spike ratio, the recovery rates of cancer cells were 92.3 ± 3.6% (H1299 lung cancer), 88.3 ± 5.5% (A549 lung cancer), 93.7 ± 5.5% (H3122 lung cancer), 95.3 ± 6.0% (PC-3 prostate cancer), 94.7 ± 4.0% (MCF-7 breast cancer), and 93.0 ± 5.3% (HCC1806 breast cancer), and the corresponding purities of separated cancer cells were 11.1 ± 1.2% (H1299 lung cancer), 10.1 ± 1.7% (A549 lung cancer), 12.1 ± 2.1% (H3122 lung cancer), 12.8 ± 1.6% (PC-3 prostate cancer), 11.9 ± 1.8% (MCF-7 breast cancer), and 12.2 ± 1.6% (HCC1806 breast cancer). Biocompatibility study on H1299 cell line and HCC1806 cell line showed that separated cancer cells had excellent short-term viability, normal proliferation and unaffected key biomarker expressions. We then demonstrated the enrichment of CTCs in blood samples obtained from two patients with newly diagnosed advanced non-small cell lung cancer (NSCLC). While still at its early stage of development, FCS could become a complementary tool for CTC separation for its high recovery rate and excellent biocompatibility, as well as its potential for further optimization and integration with other separation methods.


Assuntos
Separação Celular/instrumentação , Separação Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Nanopartículas de Magnetita/química
19.
Lab Chip ; 17(13): 2243-2255, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28590489

RESUMO

This paper reports a biocompatible and label-free cell separation method using ferrofluids that can separate a variety of low-concentration cancer cells from cell culture lines (∼100 cancer cells per mL) from undiluted white blood cells, with a throughput of 1.2 mL h-1 and an average separation efficiency of 82.2%. The separation is based on the size difference of the cancer cells and white blood cells, and is conducted in a custom-made biocompatible ferrofluid that retains not only excellent short-term viabilities but also normal proliferations of 7 commonly used cancer cell lines. A microfluidic device is designed and optimized specifically to shorten the time of live cells' exposure to ferrofluids from hours to seconds, by eliminating time-consuming off-chip sample preparation and extraction steps and integrating them on-chip to achieve a one-step process. As a proof-of-concept demonstration, a ferrofluid with 0.26% volume fraction was used in this microfluidic device to separate spiked cancer cells from cell lines at a concentration of ∼100 cells per mL from white blood cells with a throughput of 1.2 mL h-1. The separation efficiencies were 80 ± 3%, 81 ± 5%, 82 ± 5%, 82 ± 4%, and 86 ± 6% for A549 lung cancer, H1299 lung cancer, MCF-7 breast cancer, MDA-MB-231 breast cancer, and PC-3 prostate cancer cell lines, respectively. The separated cancer cells' purity was between 25.3% and 28.8%. In addition, the separated cancer cells from this strategy showed an average short-term viability of 94.4 ± 1.3%, and these separated cells were cultured and demonstrated normal proliferation to confluence even after the separation process. Owing to its excellent biocompatibility and label-free operation and its ability to recover low concentrations of cancer cells from white blood cells, this method could lead to a promising tool for rare cell separation.


Assuntos
Materiais Biocompatíveis/química , Separação Celular/métodos , Nanopartículas de Magnetita/química , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Separação Celular/instrumentação , Sobrevivência Celular , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Reagentes de Laboratório , Leucócitos/citologia , Tamanho da Partícula
20.
Adv Funct Mater ; 26(22): 3990-3998, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27478429

RESUMO

In this study, a label-free, low-cost, and fast ferrohydrodynamic cell separation scheme is demonstrated using HeLa cells (an epithelial cell line) and red blood cells. The separation is based on cell size difference, and conducted in a custom-made biocompatible ferrofluid that retains the viability of cells during and after the assay for downstream analysis. The scheme offers moderate-throughput (≈106 cells h-1 for a single channel device) and extremely high recovery rate (>99%) without the use of any label. It is envisioned that this separation scheme will have clinical applications in settings where rapid cell enrichment and removal of contaminating blood will improve efficiency of screening and diagnosis such as cervical cancer screening based on mixed populations in exfoliated samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...