Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
ACS Nano ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743777

RESUMO

Chiral materials possess broken inversion and mirror symmetry and show great potential in the application of next-generation optic, electronic, and spintronic devices. Two-dimensional (2D) chiral crystals have planar chirality, which is nonsuperimposable on their 2D enantiomers by any rotation about the axis perpendicular to the substrate. The degree of freedom to construct vertical stacking of 2D monolayer enantiomers offers the possibility of chiral manipulation for designed properties by creating multilayers with either a racemic or enantiomerically pure stacking order. However, the rapid recognition of the relative proportion of two enantiomers becomes demanding due to the complexity of stacking orders of 2D chiral crystals. Here, we report the unambiguous identification of racemic and enantiomerically pure stackings for layered ReSe2 and ReS2 using circular polarized Raman spectroscopy. The chiral Raman response is successfully manipulated by the enantiomer proportion, and the stacking orders of multilayer ReSe2 and ReS2 can be completely clarified with the help of second harmonic generation and scanning transmission electron microscopy measurements. Finally, we trained an artificial intelligent Spectra Classification Assistant to predict the chirality and the complete crystallographic structures of multilayer ReSe2 from a single circular polarized Raman spectrum with the accuracy reaching 0.9417 ± 0.0059.

2.
Nat Commun ; 15(1): 2851, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565546

RESUMO

Metal-support electronic interactions play crucial roles in triggering the hydrogen spillover (HSo) to boost hydrogen evolution reaction (HER). It requires the supported metal of electron-rich state to facilitate the proton adsorption/spillover. However, this electron-rich metal state contradicts the traditional metal→support electron transfer protocol and is not compatible with the electron-donating oxygen evolution reaction (OER), especially in proton-poor alkaline conditions. Here we profile an Ir/NiPS3 support structure to study the Ir electronic states and performances in HSo/OER-integrated alkaline water electrolysis. The supported Ir is evidenced with Janus electron-rich and electron-poor states at the tip and interface regions to respectively facilitate the HSo and OER processes. Resultantly, the water electrolysis (WE) is efficiently implemented with 1.51 V at 10 mA cm-2 for 1000 h in 1 M KOH and 1.44 V in urea-KOH electrolyte. This research clarifies the Janus electronic state as fundamental in rationalizing efficient metal-support WE catalysts.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38622383

RESUMO

PURPOSE: Cisplatin is a low-cost clinical anti-tumor drug widely used to treat solid tumors. However, its use could damage cochlear hair cells, leading to irreversible hearing loss. Currently, there appears one drug approved in clinic only used for reducing ototoxicity associated with cisplatin in pediatric patients, which needs to further explore other candidate drugs. METHODS: Here, by screening 1967 FDA-approved drugs to protect cochlear hair cell line (HEI-OC1) from cisplatin damage, we found that Tedizolid Phosphate (Ted), a drug indicated for the treatment of acute infections, had the best protective effect. Further, we evaluated the protective effect of Ted against ototoxicity in mouse cochlear explants, zebrafish, and adult mice. The mechanism of action of Ted was further explored using RNA sequencing analysis and verified. Meanwhile, we also observed the effect of Ted on the anti-tumor effect of cisplatin. RESULTS: Ted had a strong protective effect on hair cell (HC) loss induced by cisplatin in zebrafish and mouse cochlear explants. In addition, when administered systemically, it protected mice from cisplatin-induced hearing loss. Moreover, antitumor studies showed that Ted had no effect on the antitumor activity of cisplatin both in vitro and in vivo. RNA sequencing analysis showed that the otoprotective effect of Ted was mainly achieved by inhibiting phosphorylation of ERK. Consistently, ERK activator aggravated the damage of cisplatin to HCs. CONCLUSION: Collectively, these results showed that FDA-approved Ted protected HCs from cisplatin-induced HC loss by inhibiting ERK phosphorylation, indicating its potential as a candidate for preventing cisplatin ototoxicity in clinical settings.

4.
Mol Ther ; 32(5): 1387-1406, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38414247

RESUMO

Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.


Assuntos
Cisplatino , Ferroptose , Perda Auditiva , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Cisplatino/efeitos adversos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Camundongos , Perda Auditiva/induzido quimicamente , Perda Auditiva/genética , Perda Auditiva/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Modelos Animais de Doenças , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/patologia , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos
5.
ACS Nano ; 18(8): 6276-6285, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354364

RESUMO

Emerging 2D chromium-based dichalcogenides (CrXn (X = S, Se, Te; 0 < n ≤ 2)) have provoked enormous interests due to their abundant structures, intriguing electronic and magnetic properties, excellent environmental stability, and great application potentials in next generation electronics and spintronics devices. Achieving stoichiometry-controlled synthesis of 2D CrXn is of paramount significance for such envisioned investigations. Herein, we report the stoichiometry-controlled syntheses of 2D chromium selenide (CrxSey) materials (rhombohedral Cr2Se3 and monoclinic Cr3Se4) via a Cr-self-intercalation route by designing two typical chemical vapor deposition (CVD) strategies. We have also clarified the different growth mechanisms, distinct chemical compositions, and crystal structures of the two type materials. Intriguingly, we reveal that the ultrathin Cr2Se3 nanosheets exhibit a metallic feature, while the Cr3Se4 nanosheets present a transition from p-type semiconductor to metal upon increasing the flake thickness. Moreover, we have also uncovered the ferromagnetic properties of 2D Cr2Se3 and Cr3Se4 below ∼70 K and ∼270 K, respectively. Briefly, this research should promote the stoichiometric-ratio controllable syntheses of 2D magnetic materials, and the property explorations toward next generation spintronics and magneto-optoelectronics related applications.

6.
ACS Nano ; 18(8): 6256-6265, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354399

RESUMO

Self-intercalation in two-dimensional (2D) materials is significant, as it offers a versatile approach to modify material properties, enabling the creation of interesting functional materials, which is essential in advancing applications across various fields. Here, we define ic-2D materials as covalently bonded compounds that result from the self-intercalation of a metal into layered 2D compounds. However, precisely growing ic-2D materials with controllable phases and self-intercalation concentrations to fully exploit the applications in the ic-2D family remains a great challenge. Herein, we demonstrated the controlled synthesis of self-intercalated H-phase and T-phase Ta1+xS2 via a temperature-driven chemical vapor deposition (CVD) approach with a viable intercalation concentration spanning from 10% to 58%. Atomic-resolution scanning transmission electron microscopy-annular dark field imaging demonstrated that the self-intercalated Ta atoms occupy the octahedral vacancies located at the van der Waals gap. The nonperiodic Ta atoms break the centrosymmetry structure and Fermi surface properties of intrinsic TaS2. Therefore, ic-2D T-phase Ta1+xS2 consistently exhibit a spontaneous nonlinear optical (NLO) effect regardless of the sample thickness and self-intercalation concentrations. Our results propose an approach to activate the NLO response of centrosymmetric 2D materials, achieving the modulation of a wide range of optoelectronic properties via nonperiodic self-intercalation in the ic-2D family.

7.
Nat Commun ; 15(1): 501, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218730

RESUMO

The photovoltaic effect lies at the heart of eco-friendly energy harvesting. However, the conversion efficiency of traditional photovoltaic effect utilizing the built-in electric effect in p-n junctions is restricted by the Shockley-Queisser limit. Alternatively, intrinsic/bulk photovoltaic effect (IPVE/BPVE), a second-order nonlinear optoelectronic effect arising from the broken inversion symmetry of crystalline structure, can overcome this theoretical limit. Here, we uncover giant and robust IPVE in one-dimensional (1D) van der Waals (vdW) grain boundaries (GBs) in a layered semiconductor, ReS2. The IPVE-induced photocurrent densities in vdW GBs are among the highest reported values compared with all kinds of material platforms. Furthermore, the IPVE-induced photocurrent is gate-tunable with a polarization-independent component along the GBs, which is preferred for energy harvesting. The observed IPVE in vdW GBs demonstrates a promising mechanism for emerging optoelectronics applications.

8.
Nano Lett ; 24(5): 1602-1610, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38286023

RESUMO

Metallene materials with atomic thicknesses are receiving increasing attention in electrocatalysis due to ultrahigh surface areas and distinctive surface strain. However, the continuous strain regulation of metallene remains a grand challenge. Herein, taking advantage of autocatalytic reduction of Cu2+ on biaxially strained, carbon-intercalated Ir metallene, we achieve control over the carbon extraction kinetics, enabling fine regulation of carbon intercalation concentration and continuous tuning of (111) in-plane (-2.0%-2.6%) and interplanar (3.5%-8.8%) strains over unprecedentedly wide ranges. Electrocatalysis measurements reveal the strain-dependent activity toward hydrogen evolution reaction (HER), where weakly strained Ir metallene (w-Ir metallene) with the smallest lattice constant presents the highest mass activity of 2.89 A mg-1Ir at -0.02 V vs reversible hydrogen electrode (RHE). Theoretical calculations validated the pivotal role of lattice compression in optimizing H binding on carbon-intercalated Ir metallene surfaces by downshifting the d-band center, further highlighting the significance of strain engineering for boosted electrocatalysis.

9.
Biotechnol Prog ; 40(1): e3408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37956144

RESUMO

High-throughput sequencing was used to define microbial community structure and GC-MS to identify volatile flavor substances during fermentation of corn yellow wine, and results were analyzed by multivariate statistical analysis. Seventeen bacterial phyla, 239 bacterial genera, 4 fungal phyla, and 18 fungal genera were found and changes in community structure occurred during fermentation. Twenty-four volatile flavor substances, including 14 esters and 5 alcohols, were detected and changes during fermentation recorded. Sixteen microbial genera correlated with volatile flavor substances and Weissella, Lactobacillus, Pseudomonas, Rhodotorul, and Kwoniella had significant correlation with ethyl esters and higher alcohols. Micro-organisms thus influence flavor development during corn yellow wine fermentation.


Assuntos
Microbiota , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Fermentação , Zea mays , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Álcoois
10.
Nano Lett ; 24(1): 378-385, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117785

RESUMO

In self-intercalated two-dimensional (ic-2D) materials, understanding the local chemical environment and the topology of the filling site remains elusive, and the subsequent correlation with the macroscopically manifested physical properties has rarely been investigated. Herein, highly crystalline gram-scale ic-2D Ta1.33S2 crystals were successfully grown by the high-pressure high-temperature method. Employing combined atomic-resolution scanning transmission electron microscopy annular dark field imaging and density functional theory calculations, we systematically unveiled the atomic structures of an atlas of stacking registries in a well-defined √3(a) × âˆš3(a) Ta1.33S2 superlattice. Ferromagnetic order was observed in the AC' stacking registry, and it evolves into an antiferromagnetic state in AA/AB/AB' stacking registries; the AA' stacking registry shows ferrimagnetic ordering. Therefore, we present a novel approach for fabricating large-scale highly crystalline ic-2D crystals and shed light on a powerful means of modulating the magnetic order of ic-2D systems via stacking engineering, i.e., stackingtronics.

11.
Environ Monit Assess ; 196(1): 72, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127220

RESUMO

In this study, the concentrations of Cr, Cu, Ni, Pb, Zn, Cd, As, and Hg in the typical greenhouse vegetable soils in Shenyang, Northeast of China, were determined, and the pollution characteristics and primary sources of heavy mental pollution in soil were analyzed. Results showed that the sum of the mean values of eight typical heavy metals in the soil of the greenhouse soils was 219.79 mg/kg. According to the "Chinese Environmental Quality Evaluation Standard for Farmland of Greenhouse Vegetables Production" (HJ/T 333-2006), the concentrations of Cu (33.50 ± 11.99 mg/kg), Cd (0.246 ± 0.156 mg/kg), and Hg (0.214 ± 0.177 mg/kg) exceeded the limit values in 14.29%, 39.29%, and 39.29% of sampling points, respectively. The single factor pollution index and the Nemerow comprehensive pollution index of heavy metal elements showed that most greenhouse soils were at safety, alert, or light pollution levels. The potential ecological risk index (RI = 505.19) showed that 42.86% of the samples were at high or very high risk and Cd and Hg were the main ecological risk factors. Based on the result of correlation analysis, the Positive Matrix Factorization (PMF) differentiated sources of heavy metal pollution in the study area into four components, including fertilizer input, soil parent material, pesticide spraying and raw coal combustion, and plastic film mulching, which accounted for 36.76%, 22.64%, 20.89%, and 19.71%, respectively, of the total sources of heavy metals.


Assuntos
Mercúrio , Metais Pesados , Verduras , Cádmio , Monitoramento Ambiental , Medição de Risco , China , Solo
12.
Cancer Med ; 12(19): 19794-19806, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37746916

RESUMO

BACKGROUND: The utilization of neoadjuvant therapy is progressively expanding in various clinical settings. However, the absence of a clinically validated biomarker to evaluate the treatment response remains a significant challenge in the field. Circulating tumor DNA (ctDNA) detection, a novel and emerging monitoring approach in the field of oncology, holds promise as a potential prognostic biomarker for patients with cancer. This meta-analysis investigated the clinical significance of ctDNA detection as a predictive tool for cancer recurrence in patients receiving neoadjuvant treatment. METHODS: A comprehensive systematic literature search was conducted using public databases to identify relevant studies that investigated the association between ctDNA detection and cancer recurrence in patients receiving neoadjuvant treatment. Hazard ratios (HRs) and their corresponding 95% confidence intervals (95% CI) were calculated to assess the relationship between cancer recurrence and relevant factors. Cancer recurrence was considered the primary outcome. RESULTS: A total of 23 studies encompassing 1590 patients across eight different cancer types were included in the final analysis. Positive ctDNA detection was significantly associated with higher cancer recurrence, especially at post-neoadjuvant treatment and post-surgery time points. The risk values for the different cancer categories and geographic areas also differed significantly. CONCLUSION: Our comprehensive meta-analysis revealed a significant positive correlation between ctDNA detection and a higher risk of cancer recurrence in patients receiving neoadjuvant treatment. In addition, the risk of recurrence was influenced by variations in cancer type, timing of detection, and geographic region. These findings highlight the promising clinical applicability of ctDNA as a prognostic marker and monitoring approach for patients with cancer. However, the precise mechanism is unknown and more evidence is needed for further research.


Assuntos
DNA Tumoral Circulante , Terapia Neoadjuvante , Humanos , Prognóstico , Recidiva Local de Neoplasia/genética , DNA Tumoral Circulante/genética , Biomarcadores , Biomarcadores Tumorais/genética
13.
Adv Mater ; 35(46): e2306330, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37737448

RESUMO

Due to its inversion-broken triple helix structure and the nature of Weyl semiconductor, 2D Tellurene (2D Te) is promising to possess a strong nonlinear optical response in the infrared region, which is rarely reported in 2D materials. Here, a giant nonlinear infrared response induced by large Berry curvature dipole (BCD) is demonstrated in the Weyl semiconductor 2D Te. Ultrahigh second-harmonic generation response is acquired from 2D Te with a large second-order nonlinear optical susceptibility (χ(2) ), which is up to 23.3 times higher than that of monolayer MoS2 in the range of 700-1500 nm. Notably, distinct from other 2D nonlinear semiconductors, χ(2) of 2D Te increases extraordinarily with increasing wavelength and reaches up to 5.58 nm V-1 at ≈2300 nm, which is the best infrared performance among the reported 2D nonlinear materials. Large χ(2) of 2D Te also enables the high-intensity sum-frequency generation with an ultralow continuous-wave (CW) pump power. Theoretical calculations reveal that the exceptional performance is attributed to the presence of large BCD located at the Weyl points of 2D Te. These results unravel a new linkage between Weyl semiconductor and strong optical nonlinear responses, rendering 2D Te a competitive candidate for highly efficient nonlinear 2D semiconductors in the infrared region.

14.
Nature ; 622(7984): 754-760, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730999

RESUMO

Single-atom catalysts (SACs) have well-defined active sites, making them of potential interest for organic synthesis1-4. However, the architecture of these mononuclear metal species stabilized on solid supports may not be optimal for catalysing complex molecular transformations owing to restricted spatial environment and electronic quantum states5,6. Here we report a class of heterogeneous geminal-atom catalysts (GACs), which pair single-atom sites in specific coordination and spatial proximity. Regularly separated nitrogen anchoring groups with delocalized π-bonding nature in a polymeric carbon nitride (PCN) host7 permit the coordination of Cu geminal sites with a ground-state separation of about 4 Å at high metal density8. The adaptable coordination of individual Cu sites in GACs enables a cooperative bridge-coupling pathway through dynamic Cu-Cu bonding for diverse C-X (X = C, N, O, S) cross-couplings with a low activation barrier. In situ characterization and quantum-theoretical studies show that such a dynamic process for cross-coupling is triggered by the adsorption of two different reactants at geminal metal sites, rendering homo-coupling unfeasible. These intrinsic advantages of GACs enable the assembly of heterocycles with several coordination sites, sterically congested scaffolds and pharmaceuticals with highly specific and stable activity. Scale-up experiments and translation to continuous flow suggest broad applicability for the manufacturing of fine chemicals.

15.
Adv Mater ; : e2306129, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533318

RESUMO

Poly(p-phenylene-benzimidazole-terephthalamide) (PBIA) fibers with excellent mechanical properties are widely used in fields that require impact-resistant materials such as ballistic protection and aerospace. The introduction of heterocycles in polymer chains increases their flexibility and makes it easier to optimize the fiber structure. However, the inadequate orientation of polymer chains is one of the main reasons for the large difference between the measured and theoretical mechanical properties of PBIA fibers. Herein, carbon nanotubes (CNTs) are selected as an orientation seed. Their structural features allow CNTs to orient during the spinning process, which can induce an orderly arrangement of polymers and improve the orientation of the fiber microstructure. To ensure the complete 1D topology of long CNTs (≈10 µm), PBIA is used as an efficient dispersant to overcome dispersion challenges. The p-CNT/PBIA fibers (10 µm single-walled carbon nanotube 0.025 wt%) exhibit an increase of 22% in tensile strength and 23% in elongation, with a maximum tensile strength of 7.01 ± 0.31 GPa and a reinforcement efficiency of 893.6. The artificial muscle fabricated using CNT/PBIA fibers exhibits a 34.8% contraction and a 25% lifting of a 2 kg dumbbell, providing a promising paradigm for high-performance organic fibers as high-load smart actuators.

16.
Small ; 19(28): e2301403, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183299

RESUMO

Developing efficient and stable electrocatalysts for hydrogen evolution reaction (HER) over a wide pH range and industrial large-scale hydrogen production is critical and challenging. Here, a tailoring strategy is developed to fabricate an outstanding HER catalyst in both acidic and alkaline electrolytes containing high-density atomically dispersed Ru sites anchored in the CoP nanoparticles supported on carbon spheres (NC@RuSA -CoP). The obtained NC@RuSA -CoP catalyst exhibits excellent HER performance with overpotentials of only 15 and 13 mV at 10 mA cm-2 in 1 m KOH and 0.5 m H2 SO4 , respectively. The experimental results and theoretical calculations indicate that the strong interaction between the Ru site and the CoP can effectively optimize the electronic structure of Ru sites to reduce the hydrogen binding energy and the water dissociation energy barrier. The constructed alkaline anion exchange membrane water electrolyze (AAEMWE) demonstrates remarkable durability and an industrial-level current density of 1560 mA cm-2 at 1.8 V. This strategy provides a new perspective on the design of Ru-based electrocatalysts with suitable intermediate adsorption strengths and paves the way for the development of highly active electrocatalysts for industrial-scale hydrogen production.

17.
Toxicology ; 493: 153552, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37244296

RESUMO

Silica nanoparticles (SiNPs) are widely used as drug carriers for improving drug delivery and retention. The lungs are highly sensitive to the toxicity of SiNPs entering the respiratory tract. Furthermore, pulmonary lymphangiogenesis, which is the growth of lymphatic vessels observed during multiple pulmonary diseases, plays a vital role in promoting the lymphatic transport of silica in the lungs. However, more research is required on the effects of SiNPs on pulmonary lymphangiogenesis. We investigated the effect of SiNP-induced pulmonary toxicity on lymphatic vessel formation in rats and evaluated the toxicity and possible molecular mechanisms of 20-nm SiNPs. Saline containing 3.0, 6.0, and 12.0 mg/kg of SiNPs was instilled intrathecally into female Wistar rats once a day for five days, then sacrificed on day seven. Lung histopathology, pulmonary permeability, pulmonary lymphatic vessel density changes, and the ultrastructure of the lymph trunk were investigated using light microscopy, spectrophotometry, immunofluorescence, and transmission electron microscopy. CD45 expression in lung tissues was determined using immunohistochemical staining, and protein expression in the lung and lymph trunk was quantified using western blotting. We observed increased pulmonary inflammation and permeability, lymphatic endothelial cell damage, pulmonary lymphangiogenesis, and remodeling with increasing SiNP concentration. Moreover, SiNPs activated the VEGFC/D-VEGFR3 signaling pathway in the lung and lymphatic vessel tissues. SiNPs caused pulmonary damage, increased permeability and resulted in inflammation-associated lymphangiogenesis and remodeling by activating VEGFC/D-VEGFR3 signaling. Our findings provide evidence for SiNP-induced pulmonary damage and a new perspective for the prevention and treatment of occupational exposure to SiNPs.


Assuntos
Linfangiogênese , Nanopartículas , Ratos , Feminino , Animais , Dióxido de Silício/toxicidade , Ratos Wistar , Pulmão , Transdução de Sinais , Nanopartículas/toxicidade
18.
Nano Lett ; 23(10): 4595-4601, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37154868

RESUMO

Sliding ferroelectricity associated with interlayer translation is an excellent candidate for ferroelectric device miniaturization. However, the weak polarization gives rise to the poor performance of sliding ferroelectric transistors with a low on/off ratio and a narrow memory window, which restricts its practical application. To address the issue, we propose a facile strategy by regulating the Schottky barrier in sliding ferroelectric semiconductor transistors based on γ-InSe, in which a high performance with a large on/off ratio (106) and a wide memory window (4.5 V) was ultimately acquired. Additionally, the memory window of the device can be further modulated by electrostatic doping or light excitation. These results open up new ways for designing novel ferroelectric devices based on emerging sliding ferroelectricity.

19.
Ann Med ; 55(1): 2215543, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37212453

RESUMO

OBJECTIVE: We performed an umbrella meta-analysis to explore the factors that influence the efficacy of immune checkpoint inhibitor (ICI) therapy. MATERIALS AND METHODS: We systematically searched three databases (PubMed, Web of Science and Embase) up to 20 February 2023. Extracting the effect size and 95% confidence intervals for overall survival (OS), progression-free survival (PFS) and the objective response rate (ORR). RESULTS: A total of 65 articles were included. We identified the following factors that benefit ICI therapy: smoking status (PFS: 0.72 [0.62, 0.84], p < .001), chemotherapy (PFS: 0.68 [0.58, 0.79], p < .001), expression of programmed cell death ligand 1(PD-L1) (≥1%, ≥5%, or ≥10%) (≥1%: 0.76 [0.71,0.82], p < .001; ≥5%: 0.62 [0.52, 0.74], p < .001; ≥10%: 0.42 [0.30, 0.59], p < .001). We also identified three adverse factors: epidermal growth factor receptor mutations (OS: 1.57 [1.06, 2.32], p = .02), with liver metastases (OS: 1.16 [1.02,1.32], p = .02) and antibiotics (OS: 3.13 [1.25,7.84], p < .001; PFS: 2.54 [1.38, 4.68], p = .003). CONCLUSION: The results of this umbrella meta-analysis first supported pre-existing understandings of the relationship between beneficial and adverse factors with the efficacy of ICI therapy. In addition, the overexpression of PD-L1 may adversely affect patients.


The umbrella meta-analysis first supported pre-existing understandings of the relationship between beneficial and adverse factors with the efficacy of immune checkpoint inhibitor therapy.This study found three factors that are not conducive to the efficacy of immune checkpoint inhibitor: epidermal growth factor receptor mutations, with liver metastases and antibiotics.We found the overexpression of PD-L1 may adversely affect patients.


Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Antígeno B7-H1/genética , Antígeno B7-H1/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
Food Chem ; 421: 136114, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086521

RESUMO

Lateral flow strip was widely used and their qualitative and quantitative performance was in continuous improvement. However, the traditional strip was in a single-test-line format, which restricted operators to making a semi-quantitative judgment around a desired threshold concentration. Herein, a single strip with three test lines (TTLS) was developed for the semi-quantitative and quantitative determination of deoxynivalenol (DON). Four visual detection thresholds were obtained under optimized conditions and 35 wheat samples with DON content from 45 µg/kg to 2841 µg/kg were used to verify the method. The detection results were compared with that of the traditional strip and UPLC-MS/MS. In a three-test-line format, TTLS could reveal at least 200, 500, 1000, and 2000 µg/kg DON existed in different samples by the naked eye. The agreement analysis and statistical results indicated the new TTLS can be used as a useful tool for quantitative detection of DON with wide dynamic range.


Assuntos
Espectrometria de Massas em Tandem , Triticum , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Contaminação de Alimentos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...