Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(5): e2305512, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759410

RESUMO

Transparent nano-polycrystalline diamond (t-NPD) possesses superior mechanical properties compared to single and traditional polycrystalline diamonds. However, the harsh synthetic conditions significantly limit its synthesis and applications. In this study, a synthesis routine is presented for t-NPD under low pressure and low temperature conditions, 10 GPa, 1600 °C and 15 GPa, 1350 °C similar with the synthesis condition of organic precursor. Self-catalyzed hydrogenated carbon nano-onions (HCNOs) from the combustion of naphthalene enable synthesis under nearly industrial conditions, which are like organic precursor and much lower than that of graphite and other carbon allotropes. This is made possible thanks to the significant impact of hydrogen on the thermodynamics, as it chemically facilitates phase transition. Ubiquitous nanotwinned structures are observed throughout t-NPD due to the high concentration of puckered layers and stacking faults of HCNOs, which impart a Vickers hardness about 140 GPa. This high hardness and optical transparency can be attributed to the nanocrystalline grain size, thin intergranular films, absence of secondary phase and pore-free features. The facile and industrial-scale synthesis of the HCNOs precursor, and mild synthesis conditions make t-NPD suitable for a wide range of potential applications.

2.
ACS Omega ; 8(10): 9265-9274, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936331

RESUMO

Nickel borides are promising multifunctional materials for high hardness and excellent properties in catalysis and magnetism. However, it is still a blank of intrinsic properties in Ni-B compounds, because crystallization of the single phases of Ni-B compounds with micro-size is a challenge. In this work, single phases of Ni2B (I4/mcm), α-Ni4B3 (Pnma), ß-Ni4B3 (C2/c), and NiB (Cmcm) are synthesized by high pressure and high temperature (HPHT). The results indicate that synthesizing α-Ni4B3 and ß-Ni4B3 requires more energy than Ni2B and NiB. The growth process of Ni-B compounds is that Ni covers B to form Ni-B compounds under HPHT, which also makes the slight excess of B necessary. So, generating homogeneous distribution of starting materials and increasing the interdiffusion between Ni and B are two keys to synthesize well crystallized and purer samples by HPHT. This work uncovers the growth process of Ni-B compounds, which is significant to guide the synthesis of highly crystalline transition metal borides (TMBs) in the future.

3.
Materials (Basel) ; 15(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363371

RESUMO

High-quality P6322 Mn2N0.86 samples were synthesised using a high-pressure metathesis reaction, and the properties of the material were investigated. The measurements revealed that the Vickers hardness was 7.47 GPa, which is less than that predicted by commonly used theoretical models. At low air pressure, Mn2N0.86 and MnO coexist at 500 to 600 °C, and by excluding air, we succeeded in producing Mn4N by heating Mn2N0.86 in nitrogen atmosphere; we carefully studied this process with thermogravimetry and differential scanning calorimetry (TG-DSC). This gives a hint that to control temperature, air pressure and gas concentration might be an effective way to prepare fine Mn-N-O catalysis. Magnetic measurements indicated that ferromagnetism and antiferromagnetism coexist within Mn2N0.86 at room temperature and that these magnetic properties are induced by nitrogen vacancies. Ab intio simulation was used to probe the nature of the magnetism in greater detail. The research contributes to the available data and the understanding of Mn2N0.86 and suggests ways to control the formation of materials based on Mn2N0.86.

4.
Inorg Chem ; 61(29): 11046-11056, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35830569

RESUMO

Novel transition-metal borides have attracted considerable attention because they exhibit high stability under extreme conditions. Compared with binary borides, ternary transition-metal borides (TTMBs) exhibit novel boron substructures and diverse properties, which result in excellent designability. In this study, we synthesized the MAB-like (where M = iron, A = molybdenum, and B = boron) phase Fe(MoB)2 using a high-pressure and high-temperature method. Fe(MoB)2 exhibited ferromagnetic metastable characteristics with a saturation magnetization of 8.35 emu/g at room temperature. Microhardness measurement revealed an indentation hardness of 10.72 GPa, which was higher than those of conventional magnetic materials. First-principles calculations revealed excellent mechanical properties, which mainly originated from the strong covalent short B2 chains. Furthermore, magnetism was attributed to the Fe 3d electrons. Numerous d-d hybridizations existed between the Fe 3d eg and Mo 4d orbitals, and the antibonding/nonbonding state difference for up/down-spin electrons in the hybridization orbitals led to the local magnetic moment of Fe(MoB)2. The magnetic anisotropy energy analyses reveal that Fe(MoB)2 prefers the easy magnetization axis along the z direction, and Mo atom acts as a medium to realize the exchange action between two Fe atoms. The B-B and Fe-B bonds were considerably stronger than the Fe-Mo and Mo-B bonds, and Fe(MoB)2 exhibited a class of atomically laminate composed of FeB2 and Mo layers. These results may provide guidance for the design of novel multifunctional TTMBs by adjusting the interactions between binary metal components.

5.
Phys Chem Chem Phys ; 23(43): 24942, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709275

RESUMO

Correction for 'Synthesis and characterization of a strong ferromagnetic and high hardness intermetallic compound Fe2B' by Xingbin Zhao et al., Phys. Chem. Chem. Phys., 2020, 22, 27425-27432, DOI: 10.1039/D0CP03380D.

6.
ACS Omega ; 6(33): 21830-21836, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34471785

RESUMO

The connection between magnetism and superconductivity has long been discussed since the discovery of Fe-based superconductors. Here, we report the discovery of a pressure-induced transition from a spin to a superconducting state in novel MnN2 based on ab initio calculations. The superconducting state can be obtained in two ways: the first is the pressure-induced transition from an AFM-P21/m to an NM-I4/mmm phase at 30 GPa, while the other is the pressure-induced transition from an FM-I4/mmm phase to magnetic vanishing at 14 GPa, which leads to a structural transition with the distortion of octahedrons to tetragonal pyramids. NM-I4/mmm-MnN2 is superconductive with T c ≈ 17.6 K at 0 GPa. In the second way, electronic structure calculations indicate that the system transforms from a high-spin state to a low-spin state due to increasing crystal-field splitting, causing disappearance of magnetism; more electron occupancy around the Fermi level drives the emergence of superconductivity. Remarkably, I4/mmm-MnN2 can achieve mutual spin-to-superconducting state transformation by pressure. Moreover, the AFM-P21/m-MnN2 phase is extremely incompressible with the hardness above 20 GPa. Our results provide a reasonable and systematic interpretation for the connection between magnetism and superconductivity and give clues for achieving spin-to-superconducting switching materials with certain crystal features.

7.
Nanoscale Adv ; 3(19): 5683-5693, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36133273

RESUMO

With the development of multifunction and miniaturization in modern electronics, polymeric films with strong mechanical performance and high thermal conductivity are urgently needed. Two-dimensional transition metal carbides and nitrides (MXenes) have attracted extensive attention due to their tunable surface chemistry, layered structure and charming properties. However, there are few studies on using MXenes as fillers to enhance polymer properties. In this paper, we fabricate a three-dimensional foam by the freeze-drying method to enhance the interfacial interaction between adjacent MXene sheets and polyimide (PI) macromolecules, and then a composite film with a dense and well-ordered layer-by-layer structure is produced by the hot-pressing process. Based on the secondary orientation strategy, the resultant MXene/PI film exhibits an enhanced thermal conductivity of 5.12 ± 0.37 W m-1 K-1 and tensile strength of 102 ± 3 MPa. Moreover, the composite film has good flexibility and flame retardancy owing to the synergistic effect of MXene sheets and PI chains. Hence, the MXene/PI composite film with the properties of flexibility, flame-retardancy, high mechanical strength and efficient heat transmission is expected to be used as the next thermal management material in a variety of applications.

8.
Phys Chem Chem Phys ; 22(46): 27425-27432, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33232409

RESUMO

Magnetic materials attract great attention due to their fundamental importance and practical application. However, the relatively inferior mechanical properties of traditional magnetic materials limit their application in a harsh environment. In this work, we report an outstanding magnetic material that exhibits both fantastic mechanical and excellent magnetic properties, CuAl2-type Fe2B, synthesized by the high pressure and high temperature method. The magnetic saturation of Fe2B is 156.9 emu g-1 at room temperature and its Vickers hardness is 12.4 GPa which outclasses those of traditional magnetic materials. It exhibits good conductivity with a resistivity of 5.6 × 10-7 Ω m. Fe2B is a promising strong ferromagnetic material with high hardness, which makes it a good candidate for multifunction applications in a harsh environment. The high hardness of Fe2B originates from the Fe-B bond framework, and the strong ferromagnetism is mainly attributed to the large number of unpaired Fe 3d electrons. The competition of Fe 3d electrons to fall into Fe-B bonds or Fe-Fe bonds is the main factor for its magnetism and hardness. This work bridges the chasm between strong ferromagnetism and high hardness communities.

9.
Inorg Chem ; 58(22): 15573-15579, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31696701

RESUMO

Recent reports exposed an astonishing factor of high hardness that the connection between transition-metal (TM) atoms could enhance hardness, which is in contrast to the usual understanding that TM-TM will weaken hardness as the source of metallicity. It is surprising that there are two opposite mechanical characteristics in the one TM-TM bond. To uncover the intrinsic reason, we studied two appropriate mononitrides, CrN and WN, with the same light-element (LE) content and valence electron concentration. The two high-quality compounds were synthesized by a new metathesis under high pressure, and the Vickers hardness is 13.0 GPa for CrN and 20.0 GPa for WN. Combined with theoretical calculations, we found that the strong correlation of d electrons in TM-TM could seriously affect hardness. Thus, we make the complementary suggestions of the previous hardness factors that the antibonding d-electron state in TM-TM near the Fermi level should be avoided and a strong d covalent coupling in TM-TM is very beneficial for high hardness. Our results are very important for the further design of high-hardness and multifunctional TM and LE compounds.

10.
Phys Chem Chem Phys ; 21(5): 2697-2705, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30663734

RESUMO

The D7b-type structure Mn3B4 was fabricated by high-temperature and high-pressure (HPHT) methods. Hardness examination yielded an asymptotic Vickers hardness of 16.3 GPa, which is much higher than that of Mn2B and MnB2. First principle calculations and XPS results demonstrated that double zigzag boron chains form a strong covalent skeletons, which enhances this structure's integrity with high hardness. Considering that the hardensses of MnB and Mn3B4 are higher than those of Mn2B and MnB2, zigzag and double zigzag boron backbones are superior to isolated boron and graphite-like boron layer backbones for achieving higher hardness. This situation also states that a higher boron content is not the sole factor for the higher hardness in the low boron content transition metal borides. Futhermore, the co-presence of metallic manganese bilayers contribute to the high d-electron mobility and generate electrical conductivity and antiferromagnetism in Mn3B4 which provide us with a new structure prototype to design general-purpose high hardness materials.

11.
Fa Yi Xue Za Zhi ; 22(5): 355-8, 2006 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-17190149

RESUMO

OBJECTIVE: To discuss forensic identification of floating shoulder injury (FSI). METHODS: To analyze fifteen cases of FSI which were accepted from Jan. 1993 to Jan. 2006, including 15 shoulder neck fracture, 13 clavide stem fracture and 2 distal end clavide fracture, the function of shoulder joint was evaluated six months after injure considering the following three aspects: result of forensic examination such as X-ray photograph, CT and MRI, the injurers' symptom, objective sign and joint function, shoulder joint territory, degree of pain and local muscle power. RESULTS: Basing on the curative effect standard of Herscovic, all cases were divided into good. Modest, worst, which included 2, 4, 9 cases respectively; referring the standard of GA35-92, GB18667-2002, all cases were divided into six, seven, eight, nine and ten degree, which included 2,9,2,1,1 cases respectively. CONCLUSION: As a special powerful injure, FSI always companied with concurrent and multiple injure, and characterized by missed, incorrect and delayed diagnosis and infelicitous treatment, which lead to the high frequency and degree of injure. To prevent missed and incorrect forensic identification, we should have a full realization of the particularity of FSI, and evaluate the function of shoulder all-sidely, objectively and synseticaly.


Assuntos
Clavícula/lesões , Odontologia Legal/métodos , Fraturas Ósseas/diagnóstico , Escápula/lesões , Lesões do Ombro , Acidentes de Trânsito , Adolescente , Adulto , Clavícula/diagnóstico por imagem , Clavícula/cirurgia , Feminino , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Dor/etiologia , Dor/patologia , Amplitude de Movimento Articular , Estudos Retrospectivos , Escápula/diagnóstico por imagem , Escápula/cirurgia , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/fisiopatologia , Tomografia Computadorizada por Raios X , Ferimentos e Lesões/diagnóstico , Ferimentos e Lesões/diagnóstico por imagem , Ferimentos e Lesões/cirurgia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA