Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(1): nwad294, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288367

RESUMO

To investigate the circuit-level neural mechanisms of behavior, simultaneous imaging of neuronal activity in multiple cortical and subcortical regions is highly desired. Miniature head-mounted microscopes offer the capability of calcium imaging in freely behaving animals. However, implanting multiple microscopes on a mouse brain remains challenging due to space constraints and the cumbersome weight of the equipment. Here, we present TINIscope, a Tightly Integrated Neuronal Imaging microscope optimized for electronic and opto-mechanical design. With its compact and lightweight design of 0.43 g, TINIscope enables unprecedented simultaneous imaging of behavior-relevant activity in up to four brain regions in mice. Proof-of-concept experiments with TINIscope recorded over 1000 neurons in four hippocampal subregions and revealed concurrent activity patterns spanning across these regions. Moreover, we explored potential multi-modal experimental designs by integrating additional modules for optogenetics, electrical stimulation or local field potential recordings. Overall, TINIscope represents a timely and indispensable tool for studying the brain-wide interregional coordination that underlies unrestrained behaviors.

2.
J Nanobiotechnology ; 21(1): 496, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38115131

RESUMO

Exosomes are extracellular vesicles with the diameter of 30 ~ 150 nm, and are widely involved in intercellular communication, disease diagnosis and drug delivery carriers for targeted disease therapy. Therapeutic application of exosomes as drug carriers is limited due to the lack of sources and methods for obtaining adequate exosomes. Milk contains abundant exosomes, several studies have shown that milk-derived exosomes play crucial roles in preventing and treating intestinal diseases. In this review, we summarized the biogenesis, secretion and structure, current novel methods used for the extraction and identification of exosomes, as well as discussed the role of milk-derived exosomes in treating intestinal diseases, such as inflammatory bowel disease, necrotizing enterocolitis, colorectal cancer, and intestinal ischemia and reperfusion injury by regulating intestinal immune homeostasis, restoring gut microbiota composition and improving intestinal structure and integrity, alleviating conditions such as oxidative stress, cell apoptosis and inflammation, and reducing mitochondrial reactive oxygen species (ROS) and lysosome accumulation in both humans and animals. In addition, we discussed future prospects for the standardization of milk exosome production platform to obtain higher concentration and purity, and complete exosomes derived from milk. Several in vivo clinical studies are needed to establish milk-derived exosomes as an effective and efficient drug delivery system, and promote its application in the treatment of various diseases in both humans and animals.


Assuntos
Enterocolite Necrosante , Exossomos , Vesículas Extracelulares , Animais , Humanos , Recém-Nascido , Leite/química , Mucosa Intestinal , Enterocolite Necrosante/prevenção & controle
3.
Biomed Pharmacother ; 167: 115464, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37713990

RESUMO

Luteolin is a flavonoid widely present in various traditional Chinese medicines. In recent years, luteolin has received more attention due to its impressive liver protective effect, such as metabolic associated fatty liver disease, hepatic fibrosis and hepatoma. This article summarizes the pharmacological effects, pharmacokinetic characteristics, and toxicity of luteolin against liver diseases, and provides prospect. The results indicate that luteolin improves liver lesions through various mechanisms, including inhibiting inflammatory factors, reducing oxidative stress, regulating lipid balance, slowing down excessive aggregation of extracellular matrix, inducing apoptosis and autophagy of liver cancer cells. Pharmacokinetics research manifested that due to metabolic effects, the bioavailability of luteolin is relatively low. It is worth noting that appropriate modification, new delivery systems, and derivatives can enhance its bioavailability. Although many studies have shown that the toxicity of luteolin is minimal, strict toxicity experiments are still needed to evaluate its safety and promote its reasonable development. In addition, this study also discussed the clinical applications related to luteolin, indicating that it is a key component of commonly used liver protective drugs in clinical practice. In view of its excellent pharmacological effects, luteolin is expected to become a potential drug for the treatment of various liver diseases.

4.
J Adv Res ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579917

RESUMO

INTRODUCTION: Acute lung injury (ALI) is a lung disease characterized by inflammation and still requires further drug development. Forsythiaside A as the active compound of Forsythiae Fructus has the therapeutic potential for ALI. OBJECTIVE: To investigate the mechanism of forsythiaside A in treating ALI through PPAR-γ and its conjugate RXR-α based on gut-lung axis. METHODS: This study constructed in vitro and in vivo injury models using LPS and TNF-α. Forsythiaside A was used for the drug treatment, and RXR-α inhibitor UVI3003 was used to interfere with PPAR-γ/RXR-α complexes in the cells. HE staining was used for histopathological examination. Serum endotoxin contents were determined using limulus lysate kit. IHC staining and Western blot were conducted to assess the protein expressions. ELISA was applied to examine the content of pro-inflammatory cytokines in the cell supernatants. The protein interactions were analyzed via CO-IP. RESULTS: In vivo results showed that forsythiaside A regulated PPAR-γ/RXR-α and inhibited TLR4/MAPK/NF-κB and MLCK/MLC2 signal pathways, thus inhibiting inflammation and epithelial barrier damages of lung and colon in ALI mice induced by intratracheal LPS. PPAR-γ/RXR-α were promoted by forsythiaside A in lungs, whereas inhibited by forsythiaside A in colons. Additionally, in vitro results showed that forsythiaside A suppressed inflammation and epithelial barrier damages in macrophages and lung/colon epithelial cells, by manipulating PPAR-γ/RXR-α to suppress the LPS- and TNF-α-induced activation of TLR4/MAPK/NF-κB and NF-κB/MLCK/MLC2 signal pathways. Moreover, further mechanism study indicated that forsythiaside A showed a cell-specific regulatory effect on PPAR-γ/RXR-α complex. Specifically, the PPAR-γ/RXR-α protein interactions were promoted by forsythiaside A in LPS-induced macrophages RAW264.7 and TNF-α-induced lung epithelial cells A549, but inhibited by forsythiaside A in TNF-α-induced colon epithelial cells SW620. CONCLUSION: In the treatment of ALI, Forsythiaside A inhibited inflammation and epithelial barrier damages of lung and colon through its regulation on PPAR-γ/RXR-α complex.

8.
Biomed Pharmacother ; 163: 114882, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196541

RESUMO

Celastrol is a pentacyclic triterpenoid extracted from the traditional Chinese medicine Tripterygium wilfordii Hook F., which has multiple pharmacological activities. In particular, modern pharmacological studies have demonstrated that celastrol exhibits significant broad-spectrum anticancer activities in the treatment of a variety of cancers, including lung cancer, liver cancer, colorectal cancer, hematological malignancies, gastric cancer, prostate cancer, renal carcinoma, breast cancer, bone tumor, brain tumor, cervical cancer, and ovarian cancer. Therefore, by searching the databases of PubMed, Web of Science, ScienceDirect and CNKI, this review comprehensively summarizes the molecular mechanisms of the anticancer effects of celastrol. According to the data, the anticancer effects of celastrol can be mediated by inhibiting tumor cell proliferation, migration and invasion, inducing cell apoptosis, suppressing autophagy, hindering angiogenesis and inhibiting tumor metastasis. More importantly, PI3K/Akt/mTOR, Bcl-2/Bax-caspase 9/3, EGFR, ROS/JNK, NF-κB, STAT3, JNK/Nrf2/HO-1, VEGF, AR/miR-101, HSF1-LKB1-AMPKα-YAP, Wnt/ß-catenin and CIP2A/c-MYC signaling pathways are considered as important molecular targets for the anticancer effects of celastrol. Subsequently, studies of its toxicity and pharmacokinetic properties showed that celastrol has some adverse effects, low oral bioavailability and a narrow therapeutic window. In addition, the current challenges of celastrol and the corresponding therapeutic strategies are also discussed, thus providing a theoretical basis for the development and application of celastrol in the clinic.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Triterpenos , Masculino , Humanos , Transdução de Sinais , Proteínas Proto-Oncogênicas c-myc , Fosfatidilinositol 3-Quinases , Triterpenos Pentacíclicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral
9.
J Nanobiotechnology ; 21(1): 121, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029392

RESUMO

Liver fibrosis could be the last hope for treating liver cancer and remodeling of the hepatic microenvironment has emerged as a strategy to promote the ablation of liver fibrosis. In recent years, especially with the rapid development of nanomedicine, hepatic microenvironment therapy has been widely researched in studies concerning liver cancer and fibrosis. In this comprehensive review, we summarized recent advances in nano therapy-based remodeling of the hepatic microenvironment. Firstly, we discussed novel strategies for regulatory immune suppression caused by capillarization of liver sinusoidal endothelial cells (LSECs) and macrophage polarization. Furthermore, metabolic reprogramming and extracellular matrix (ECM) deposition are caused by the activation of hepatic stellate cells (HSCs). In addition, recent advances in ROS, hypoxia, and impaired vascular remodeling in the hepatic fibrotic microenvironment due to ECM deposition have also been summarized. Finally, emerging nanotherapeutic approaches based on correlated signals were discussed in this review. We have proposed novel strategies such as engineered nanotherapeutics targeting antigen-presenting cells (APCs) or direct targeting T cells in liver fibrotic immunotherapy to be used in preventing liver fibrosis. In summary, this comprehensive review illustrated the opportunities in drug targeting and nanomedicine, and the current challenges to be addressed.


Assuntos
Células Endoteliais , Neoplasias Hepáticas , Humanos , Células Endoteliais/metabolismo , Cirrose Hepática/terapia , Cirrose Hepática/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral
11.
Biomed Pharmacother ; 160: 114311, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764133

RESUMO

Fatty acids (FAs), as part of lipids, are involved in cell membrane composition, cellular energy storage, and cell signaling. FAs can also be toxic when their concentrations inside and/or outside the cell exceed physiological levels, which is called "lipotoxicity", and steatosis is a form of lipotoxity. To facilitate the storage of large quantities of FAs in cells, they undergo a process called lipolysis or lipophagy. This review focuses on the effects of lipolytic enzymes including cytoplasmic "neutral" lipolysis, lysosomal "acid" lipolysis, and lipophagy. Moreover, the impact of related lipolytic enzymes on lipid metabolism homeostasis and energy conservation, as well as their role in lipid-related metabolic diseases. In addition, we describe how they affect lipid metabolism homeostasis and energy conservation in lipid-related metabolic diseases with a focus on hepatic steatosis and cancer and the pathogenesis and therapeutic targets of AMPK/SIRTs/FOXOs, PI3K/Akt, PPARs/PGC-1α, MAPK/ERK1/2, TLR4/NF-κB, AMPK/mTOR/TFEB, Wnt/ß-catenin through immune inflammation, oxidative stress and autophagy-related pathways. As well as the current application of lipolytic enzyme inhibitors (especially Monoacylglycerol lipase (MGL) inhibitors) to provide new strategies for future exploration of metabolic programming in metabolic diseases.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Humanos , Lipólise/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Metabolismo dos Lipídeos/fisiologia , Doenças Metabólicas/metabolismo , Ácidos Graxos/metabolismo , Autofagia/fisiologia
12.
Wiley Interdiscip Rev RNA ; 14(4): e1773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36585388

RESUMO

Liver fibrosis is a process of over-extracellular matrix (ECM) aggregation and angiogenesis, which develops into cirrhosis and hepatocellular carcinoma (HCC). With the increasing pressure of liver fibrosis, new therapeutics to cure this disease requires much attention. Exosome-cargoed microRNAs (miRNAs) are emerging approaches in the precision of the liver fibrotic paradigm. In this review, we outlined the different types of hepatic cells derived miRNAs that drive intra-/extra-cellular interactive communication in liver fibrosis with different physiological and pathological processes. Specifically, we highlighted the possible mechanism of liver fibrosis pathogenesis associated with immune response and angiogenesis. In addition, potential clinical biomarkers and different stem cell transplant-derived miRNAs-based therapeutic strategies in liver fibrosis were summarized in this review. miRNAs-based approaches might help researchers devise new candidates for the cell-free treatment of liver fibrosis. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , MicroRNAs/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Cirrose Hepática/diagnóstico , Cirrose Hepática/genética , Cirrose Hepática/terapia , Biomarcadores
13.
Pharmacol Res ; 187: 106587, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460279

RESUMO

Cucurbitacin B (CuB, C32H46O8), the most abundant and active member of cucurbitacins, which are highly oxidized tetracyclic triterpenoids. Cucurbitacins are widely distributed in a variety of plants and mainly isolated from plants in the Cucurbitaceae family. CuB is mostly obtained from the pedicel of Cucumis melo L. Modern pharmacological studies have confirmed that CuB has a broad range of pharmacological activities, with significant therapeutic effects on a variety of diseases including inflammatory diseases, neurodegenerative diseases, diabetes mellitus, and cancers. In this study the PubMed, Web of Science, Science Direct, and China National Knowledge Infrastructure (CNKI) databases were searched from 1986 to 2022. After inclusion and exclusion criteria were applied, 98 out of 2484 articles were selected for a systematic review to comprehensively summarize the pharmacological activity, toxicity, and pharmacokinetic properties of CuB. The results showed that CuB exhibits potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective, and anti-cancer activities mainly via regulating various signaling pathways, such as the Janus kinase/signal transducer and activator of transcription-3 (JAK/STAT3), nuclear factor erythroid 2-related factor-2/antioxidant responsive element (Nrf2/ARE), nuclear factor (NF)-κB, AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt, cancerous inhibitor of protein phosphatase-2A/protein phosphatase-2A (CIP2A/PP2A), Wnt, focal adhesion kinase (FAK), Notch, and Hippo-Yes-associated protein (YAP) pathways. Studies of its toxicity and pharmacokinetic properties showed that CuB has non-specific toxicity and low bioavailability. In addition, derivatives and clinical applications of CuB are discussed in this paper.


Assuntos
Cucurbitacinas , Triterpenos , Cucurbitacinas/farmacologia , Cucurbitacinas/uso terapêutico , Proteína Fosfatase 2/metabolismo , Antioxidantes , Fosfatidilinositol 3-Quinases , Triterpenos/farmacologia , NF-kappa B
14.
Phytomedicine ; 108: 154517, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332390

RESUMO

BACKGROUND: Angiogenesis is a pathological phenomenon contribute to the development of chronic liver diseases, and anti-angiogenic therapy is an effective strategy to alleviate liver fibrosis. Carthami flos, a medicinal and edible herb, has the effects of improving blood circulation and regulating angiogenesis. However, the anti-angiogenic effect of Carthami flos in liver fibrosis remains unknown. METHODS: We investigated the protective effect and therapeutic mechanism of Carthami flos extract (CFE) on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. The liver injury and collagen deposition were observed and evaluated by conducting HE, Masson, and Sirius red staining, testing the serum biochemical indexes (ALT, AST, ALP, γ-GT), and measuring the contents of HYP and four indexes of liver fiber (Col-IV, LN, HA, PC-III). Simultaneously, the expressions of α-SMA and Collagen-I were detected to determine the activation of hepatic stellate cells (HSCs). Subsequently, we measured the expressions of angiogenesis-related proteins such as PDGFRB, ERK1/2, p-ERK1/2, MEK, p-MEK, HIF-1α, VEGFA, VEGFR2, AKT and eNOS, and the mRNA levels of PDGFRB and VEGFA. Additionally, immunofluorescence staining and RT-qPCR assays were carried out to ascertain the expressions of continuous endothelial markers CD31, CD34 and vWF, and scanning electron microscope analysis was performed to observe the number of sinusoidal endothelial fenestrations. RESULTS: Herein, we found that CFE could significantly reduce liver injury and collagen deposition, like the same effect of colchicine. CFE significantly alleviated CCl4-induced liver injury and fibrosis, mainly manifested by reducing the levels of ALT, AST, ALP and γ-GT and decreasing the contents of HYP, Col-IV, LN, HA and PC-III. Additionally, CCl4 promoted the activation of HSCs by increasing the expressions of α-SMA and Collagen-I, while CFE could rectify the condition. Moreover, CFE treatment prevented the CCl4-induced the up-regulation of PDGFRB, p-MEK, p-ERK1/2, HIF-1α, VEGFA, VEGFR2, AKT and eNOS, suggesting that CFE might provide the protection against abnormal angiogenesis. In the meantime, the gradual disappearance of sinusoidal capillarization after CFE treatment was supported by the decreased the contents of CD31, CD34 and vWF, as well as the increased number of sinusoidal endothelial fenestrae. CONCLUSION: In this study, the reduction of collagen deposition, the obstruction of HSCs activation, the inactivation of angiogenic signaling pathways and the weakening of hepatic sinusoidal capillarization jointly confirmed that CFE might be promising to resist angiogenesis in liver fibrosis via the PDGFRB/ERK/HIF-1α and VEGFA/AKT/eNOS signaling pathways. Nevertheless, as a potential therapeutic drug, the deeper mechanism of Carthami flos still needs to be further elucidated.


Assuntos
Tetracloreto de Carbono , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Animais , Camundongos , Tetracloreto de Carbono/efeitos adversos , Colágeno/metabolismo , Células Estreladas do Fígado , Fígado , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Fator de von Willebrand/metabolismo , Fator de von Willebrand/farmacologia , Fator de von Willebrand/uso terapêutico , Helianthus
15.
Phytother Res ; 37(1): 62-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36131369

RESUMO

This study aimed to investigate the therapeutic effect of quercetin on ethanol-induced hepatic steatosis in L02 cells and elucidate the potential mechanism. In brief, L02 cells were pretreated with or without ethanol (3%) for 24 h, then treated quercetin (80, 40, 20 µM) for 24 h. The transfection procedure was performed with transcription factor EB (TFEB) small interfering RNA (siRNA TFEB) for 24 h. Our results showed that quercetin autophagic flux in the L02 cells, via upregulating of microtubule associated protein light chain 3B (LC3-II) and lysosome-associated membrane protein 1 (LAMP1), then downregulating of protein sequestosome 1 (SQSTM1/p62). Mechanistically, quercetin activated TFEB nuclear translocation, contributing to lysosomal biogenesis and autophagic activation. Accordingly, the genetic inhibition of TFEB-dependent autophagy decreased ethanol-induced fat accumulation in L02 cells via regulating fatty acid ß oxidation and lipid synthesis. Subsequently, quercetin-induced TFEB-dependent autophagic activation was also linked to inhibit oxidative stress via suppressing reactive oxygen species (ROS), enhancing activities of antioxidant enzymes, and promoting nuclear transfer of the nuclear factor E2-related factor 2 (Nrf2) translocation. Thus, we uncovered a novel protective mechanism against ethanol-induced hepatic steatosis and oxidative stress through TFEB-mediated lysosomal biogenesis and discovered insufficient autophagy as a novel previously unappreciated autophagic flux.


Assuntos
Etanol , Fígado Gorduroso , Humanos , Etanol/toxicidade , Quercetina/farmacologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/tratamento farmacológico , Autofagia , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
16.
Plant Foods Hum Nutr ; 77(4): 514-520, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36103040

RESUMO

Penthorum chinense Pursh (PCP), a medicinal and edible plant, is widely used in many clinical liver diseases. Oxidative stress and autophagy impairment play crucial roles in the pathophysiology of alcoholic liver disease (ALD). Therefore, the aim of this study was to elucidate the mechanism of PCP in attenuating ethanol-induced liver injury. The liver-specific transgenic zebrafish larvae (lfabp: EGFP) at three days post-fertilization (3 dpf) were treated with different concentrations of PCP (100, 50 and 25 µg/mL) for 48 h, after soaked in a 350 mM ethanol for 32 h. Whole-mount oil red O, H&E staining and biochemical kits were used to detect fatty liver function and fat accumulation, western blot (WB) and immunofluorescence were used to determine proteins expression, and RT-qPCR was used to further verify the related gene expression. PCP restored zebrafish liver function. Additionally, PCP (as dose-dependent) blocked the expression of cytochrome P450 2E1 (CYP2E1), the production of intracellular reactive oxygen species (ROS) and alleviated liver fat accumulation and oxidative damage. PCP exerted its hepatoprotective function by downregulating the expression of kelch-like ECH-associated protein 1 (Keap1), up-regulating the expression of nucleus factor-E2-related factor 2 (Nrf2) (transferring to the nucleus), and attenuating systemic oxidative stress. Furthermore, PCP reduced the expression of sequestosome 1 (p62/SQSTM1, p62), Atg13, and Beclin 1, up-regulating autophagy signaling pathway. Taken together, the molecular evidence that PCP protected the ethanol-induced hepatic oxidative stress and autophagy impairment through activating AMPK/p62/Nrf2/mTOR signaling axis.


Assuntos
Saxifragales , Peixe-Zebra , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Peixe-Zebra/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Etanol/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Beclina-1/metabolismo , Estresse Oxidativo , Fígado/metabolismo , Autofagia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
17.
Front Immunol ; 13: 943321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935939

RESUMO

Quercetin, a naturally non-toxic flavonoid within the safe dose range with antioxidant, anti-apoptotic and anti-inflammatory properties, plays an important role in the treatment of aging-related diseases. Sirtuin 1 (SIRT1), a member of NAD+-dependent deacetylase enzyme family, is extensively explored as a potential therapeutic target for attenuating aging-induced disorders. SIRT1 possess beneficial effects against aging-related diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Depression, Osteoporosis, Myocardial ischemia (M/I) and reperfusion (MI/R), Atherosclerosis (AS), and Diabetes. Previous studies have reported that aging increases tissue susceptibility, whereas, SIRT1 regulates cellular senescence and multiple aging-related cellular processes, including SIRT1/Keap1/Nrf2/HO-1 and SIRTI/PI3K/Akt/GSK-3ß mediated oxidative stress, SIRT1/NF-κB and SIRT1/NLRP3 regulated inflammatory response, SIRT1/PGC1α/eIF2α/ATF4/CHOP and SIRT1/PKD1/CREB controlled phosphorylation, SIRT1-PINK1-Parkin mediated mitochondrial damage, SIRT1/FoxO mediated autophagy, and SIRT1/FoxG1/CREB/BDNF/Trkß-catenin mediated neuroprotective effects. In this review, we summarized the role of SIRT1 in the improvement of the attenuation effect of quercetin on aging-related diseases and the relationship between relevant signaling pathways regulated by SIRT1. Moreover, the functional regulation of quercetin in aging-related markers such as oxidative stress, inflammatory response, mitochondrial function, autophagy and apoptosis through SIRT1 was discussed. Finally, the prospects of an extracellular vesicles (EVs) as quercetin loading and delivery, and SIRT1-mediated EVs as signal carriers for treating aging-related diseases, as well as discussed the ferroptosis alleviation effects of quercetin to protect against aging-related disease via activating SIRT1. Generally, SIRT1 may serve as a promising therapeutic target in the treatment of aging-related diseases via inhibiting oxidative stress, reducing inflammatory responses, and restoring mitochondrial dysfunction.


Assuntos
Quercetina , Sirtuína 1 , Senescência Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Sirtuína 1/metabolismo
18.
Oxid Med Cell Longev ; 2022: 4591134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35879991

RESUMO

Alcoholic liver disease (ALD) is a multifaceted process that involves excessive lipid, reactive oxygen species (ROS) production, unbalanced mitochondrial homeostasis, and ultimate cell death. Quercetin is a dietary phytochemical presented in various fruits and vegetables, which has anti-inflammatory and antioxidant effects. According to recent advances in pharmanutritional management, the effects of quercetin on various mitochondrial processes have attracted attention. In the study, we explored whether quercetin could attenuate ethanol-induced hepatocyte pyroptosis by maintaining mitochondrial homeostasis and studied its hepatoprotective effect and the underlying mechanism. We chose L02 cells to establish an in vitro model with ethanol-induced hepatocyte pyroptosis. Then, the cells at approximately 80% confluence were treated with quercetin (80, 40, and 20 µM). The cell viability (CCK-8) was used to investigate the effect of quercetin on ethanol-induced L02 cell proliferation. Relative assay kits were used to measure oxidative stress index (OSI = TOS/TAS), lipid peroxidation (LPO) release, and mitochondrial membrane potential (δΨm). The morphology of mitochondria was characterized by transmission electron microscopy- (TEM-) based analysis. Mitochondrial dynamics (Mito Tracker Green), mitROS (MitoSOX Red Mitochondrial Superoxide) production, and nuclear DNA (nDNA) damage (γH2AX) markers were detected by immunofluorescence. The mRNA levels of mitochondrial function (including mitochondrial DNA (mtDNA) transcription genes TWNK, MTCO1, and MFND) and pyroptosis-related genes were detected by RT-qPCR, and the protein levels of NLRP3, ASC, caspase1, cleaved-caspase1, IL-18, IL-1ß, and GSDMD-N were detected by western blot. The results showed that quercetin treatment downregulated redox status, lipid droplets, and LPO release, restored damaged mitochondrial membrane potential, and repaired mtDNA damage, PGC-1α nuclear transfer, and mitochondrial dynamics. The gene and protein expressions of NLRP3, ASC, cleaved-caspase1, IL-18, IL-1ß, and GSDMD-N were decreased, which effectively inhibited cell pyroptosis. Therefore, the results indicated that quercetin protected ethanol-induced hepatocyte pyroptosis via scavenging mitROS and promoting PGC-1α-mediated mitochondrial homeostasis in L02 cells.


Assuntos
Piroptose , Quercetina , DNA Mitocondrial/metabolismo , Etanol/farmacologia , Hepatócitos/metabolismo , Homeostase , Interleucina-18/metabolismo , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo
19.
Int Immunopharmacol ; 108: 108712, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35397391

RESUMO

Sirtuins (SIRTs), a NAD+ family of dependent deacetylases, are involved in the regulation of various human diseases. Recently, accumulating evidence has uncovered number of substrates and crucial roles of SIRTs in the pathogenesis of alcoholic liver disease (ALD). However, systematic reports are still lacking, so this review provides a comprehensive profile of the crucial physiological functions of SIRTs and its role in attenuating ALD, including alcoholic liver steatosis, steatohepatitis, and fibrosis. SIRTs play beneficial roles in energy/lipid metabolism, oxidative stress, inflammatory response, mitochondrial homeostasis, autophagy and necroptosis of ALD via regulating multiple signaling transduction pathways such as AMPK, LKB1, SREBP1, Lipin1, PGC-1α, PPARα/γ, FoxO1/3a, Nrf2/p62, mTOR, TFEB, RIPK1/3, HMGB1, NFATc4, NF-κB, TLR4, NLRP3, P2X7R, MAPK, TGF1ß/Smads and Wnt/ß-catenin. In addition, the mechanism and clinical application of natural/ synthetic SIRTs agonists in ALD are summarized, which provide a new idea for the treatment of ALD and basic foundation for further studies into target drugs.


Assuntos
Fígado Gorduroso Alcoólico , Fígado Gorduroso , Hepatopatias Alcoólicas , Sirtuínas , Fígado Gorduroso/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Humanos , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Estresse Oxidativo , Sirtuínas/metabolismo
20.
J Ethnopharmacol ; 293: 115322, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35483561

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Forsythiae Fructuse (FF), the dried fruit of Forsythia suspensa (Thunb.) Vahl, is used as a traditional Chinese medicine that has been reported to exert good anti-inflammatory effects in the treatment of many lung diseases. AIM OF THE STUDY: The purpose of this study was to investigate the anti-inflammatory mechanism of FF in the treatment of acute lung injury (ALI) based on gut-lung axis. MATERIALS AND METHODS: ALI model was established by the intratracheal instillation of 5 mg/kg LPS in ICR mice. Mice were administered intragastrically with dexamethasone (DEX), and low-dose, medium-dose and high-dose of FF extracts (LFF, MFF and HFF) in addition to the mice of control (CON) and model (MOD) groups. Pathological observation and inflammation scoring of lung tissues were based on HE staining. Limulus lysate assay was used to detect endotoxin levels in serum. Western blot and Real-time quantitative PCR were respectively applied to detect the protein and mRNA expressions in both lung and colon tissues. RESULTS: Lung pathological injury, inflammatory score and inflammatory genes (IL-6, IL-1ß, TNF-α) could be effectively suppressed by FF in LPS-induced ALI mice. FF also increased the proteins of epithelial markers (E-cadherin, ZO-1 and Claudin-1) in lung and colon tissues, and decreased colonic inflammatory genes for protecting the epithelial barriers of lung and colon. The protein expression of TLR4/MAPK/NF-κB inflammatory signaling pathway in lung and colon was significantly inhibited by FF via the regulation of PPAR-γ, a nuclear hormone receptor that forms the heterodimer with RXR-α to inhibit inflammatory gene transcription. More specifically, FF promoted the upregulation of protein, phosphorylated proteins and genes of PPAR-γ/RXR-α in lungs, while inhibited the protein overexpression and phosphorylation of PPAR-γ/RXR-α in colons. CONCLUSIONS: FF exhibited anti-inflammatory effects and protected the epithelial barriers in lungs and colons by regulating PPAR-γ/RXR-α in the treatment of LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Medicamentos de Ervas Chinesas , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Anti-Inflamatórios/efeitos adversos , Colo/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , PPAR alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...