Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 198: 114244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467336

RESUMO

Designed peptides are promising biomaterials for biomedical applications. The amphiphilic cationic antimicrobial peptide (AMP), A9K, can self-assemble into nano-rod structures and has shown cancer cell selectivity and could therefore be a promising candidate for therapeutic delivery into cancer cells. In this paper, we investigate the selectivity of A9K for cancer cell models, examining its effect on two human cancer cell lines, A431 and HCT-116. Little or no activity was observed on the control, human dermal fibroblasts (HDFs). In the cancer cell lines the peptide inhibited cellular growth through changes in mitochondrial morphology and membrane potential while remaining harmless towards HDFs. In addition, the peptide can bind to and protect nucleic acids while transporting them into both 2D cultures and 3D spheroids of cancer cells. A9K showed high efficiency in delivering siRNA molecules into the centre of the spheroids. A9K was also explored in vivo, using a zebrafish (Danio rerio) development toxicity assay, showing that the peptide is safe at low doses. Finally, a high-content imaging screen, using RNA interference (RNAi) targeted towards cellular uptake, in HCT-116 cells was carried out. Our findings suggest that active cellular uptake is involved in peptide internalisation, mediated through clathrin-mediated endocytosis. These new discoveries make A9K attractive for future developments in clinical and biotechnological applications.


Assuntos
Neoplasias , Ácidos Nucleicos , Animais , Humanos , Peptídeos Antimicrobianos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Técnicas de Transferência de Genes , Peptídeos/química , Ácidos Nucleicos/química , Neoplasias/tratamento farmacológico , RNA Interferente Pequeno/metabolismo
2.
Colloids Surf B Biointerfaces ; 234: 113739, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219640

RESUMO

Browning has many important implications with nutrition and the shelf life of foods. Mitigating browning is of particular interest in food chemistry. The addition of antioxidants has been a common strategy to extend shelf life of drug and food products. In this work, we report a microfluidic technology for encapsulation of three common food additives (potassium metathionite (PMS), curcumin (CCM), and ß-carotene (ß-Car)) into nano-formulations using low-cost and readily available materials such as shellac. The food additives encapsulated nanoparticles provide a microenvironment that can prevent oxidation during daily storage. The results showed that the produced nanoparticles had a narrow size distribution with an average size of around 100 nm, were stable at conventional storage conditions (4 ºC) for 18 weeks, and had sustained release ability at 37 ºC, pH= 7.8, 160 rpm. In addition, further experiments showed that the formulation of hydrophobic additives, such as CCM and ß-Car did not only improve their bioavailability but also allowed for the encapsulation of a combination of ingredients. In addition, the antioxidants loaded nanoparticles demonstrated good biocompatibility, low toxicity to human cells. The longer release time of encapsulated food additives increases shelf life of foods and enhances consumer purchase preferences, which not only saves costs but also reduces waste. In summary, this study shows that such antioxidant-loaded nanoparticles provide a promising strategy in extending the shelf life of food products.


Assuntos
Antioxidantes , Nanopartículas , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Aditivos Alimentares , Microfluídica , Alimentos , Nanopartículas/química
3.
Pharmaceutics ; 15(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513998

RESUMO

Metal-organic frameworks (MOFs) are heralded as potential nanoplatforms for biomedical applications. Zeolitic imidazolate framework-8 (ZIF-8), as one of the most well known MOFs, has been widely applied as a drug delivery carrier for cancer therapy. However, the application of ZIF-8 nanoparticles as a therapeutic agent has been hindered by the challenge of how to control the release behaviour of anti-cancer zinc ions to cancer cells. In this paper, we designed microfluidic-assisted core-shell ZIF-8 nanoparticles modified with silk fibroin (SF) and polydopamine (PDA) for sustained release of zinc ions and curcumin (CUR) and tested these in vitro in various human breast cancer cells. We report that microfluidic rapid mixing is an efficient method to precisely control the proportion of ZIF-8, SF, PDA, and CUR in the nanoparticles by simply adjusting total flow rates (from 1 to 50 mL/min) and flow rate ratios. Owing to sufficient and rapid mixing during microfluidic-assisted nanoprecipitation, our designer CUR@ZIF-SF-PDA nanoparticles had a desired particle size of 170 nm with a narrow size distribution (PDI: 0.08), which is much smaller than nanoparticles produced using traditional magnetic stirrer mixing method (over 1000 nm). Moreover, a properly coated SF layer successfully enhanced the capability of ZIF-8 as a reservoir of zinc ions. Meanwhile, the self-etching reaction between ZIF-8 and PDA naturally induced a pH-responsive release of zinc ions and CUR to a therapeutic level in the MDA-MB-231, SK-BR-3, and MCF-7 breast cancer cell lines, resulting in a high cellular uptake efficiency, cytotoxicity, and cell cycle arrest. More importantly, the high biocompatibility of designed CUR@ZIF-SF-PDA nanoparticles remained low in cytotoxicity on AD-293 non-cancer cells. We demonstrate the potential of prepared CUR@ZIF-SF-PDA nanoparticles as promising carriers for the controlled release of CUR and zinc ions in breast cancer therapy.

4.
ACS Biomater Sci Eng ; 9(6): 3402-3413, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37140447

RESUMO

Current anticancer research shows that a combination of multiple treatment methods can greatly improve the killing of tumor cells. Using the latest microfluidic swirl mixer technology, combined with chemotherapy and photothermal-ablation therapy, we developed multiresponsive targeted antitumor nanoparticles (NPs) made of folate-functionalized gelatin NPs under 200 nm in size and with encapsulated CuS NPs, Fe3O4 NPs, and curcumin (Cur). By exploring gelatin's structure, adjusting its concentration and pH, and fine-tuning the fluid dynamics in the microfluidic device, the best preparation conditions were obtained for gelatin NPs with an average particle size of 90 ± 7 nm. The comparative targeting of the drug delivery system (DDS) was demonstrated on lung adenocarcinoma A549 cells (low level of folate receptors) and breast adenocarcinoma MCF-7 cells (high level of folate receptors). Folic acid helps achieve targeting and accurate delivery of NPs to the MCF-7 tumor cells. The synergistic photothermal ablation and curcumin's anticancer activity are achieved through infrared light irradiation (980 nm), while Fe3O4 is guided with an external magnetic field to target gelatin NPs and accelerate the uptake of drugs, thus efficiently killing tumor cells. The method described in this work is simple, easy to repeat, and has great potential to be scaled up for industrial production and subsequent clinical use.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Humanos , Curcumina/farmacologia , Curcumina/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Gelatina , Microfluídica , Nanopartículas/química , Ácido Fólico
5.
Colloids Surf B Biointerfaces ; 227: 113350, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209598

RESUMO

3D cell culture is a relatively recent trend in biomedical research for artificially mimicking in vivo environment and providing three dimensions for the cells to grow in vitro, particularly with regard to surface-adherent mammalian cells. Different cells and research objectives require different culture conditions which has led to an increase in the diversity of 3D cell culture models. In this study, we show two independent on-carrier 3D cell culture models aimed at two different potential applications. Firstly, micron-scale porous spherical structures fabricated from poly (lactic-co-glycolic acid) or PLGA are used as 3D cell carriers so that the cells do not lose their physiologically relevant spherical shape. Secondly, millimetre-scale silk fibroin structures fabricated by 3D inkjet bioprinting are used as 3D cell carriers to demonstrate cell growth patterning in 3D for use in applications which require directed cell growth. The L929 fibroblasts demonstrated excellent adherence, cell-division and proliferation on the PLGA carriers, while the PC12 neuronal cells showed excellent adherence, proliferation and spread on the fibroin carriers without any evidence of cytotoxicity from the carriers. The present study thus proposes two models for 3D cell culture and demonstrates, firstly, that easily fabricable porous PLGA structures can act as excellent cell carriers for aiding cells easily retain their physiologically relevant 3D spherical shape in vitro, and secondly, that 3D inkjet printed silk fibroin structures can act as geometrically-shaped carriers for 3D cell patterning or directed cell growth in vitro. While the 'fibroblasts on PLGA carriers' model will help achieve more accurate results than the conventional 2D culture in cell research, such as drug discovery, and cell proliferation for adoptive cell transfer, such as stem cell therapy, the 'neuronal cells on silk fibroin carriers' model will help in research requiring patterned cell growth, such as treatment of neuropathies.


Assuntos
Fibroínas , Animais , Fibroínas/farmacologia , Fibroínas/química , Alicerces Teciduais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Fibroblastos , Engenharia Tecidual/métodos , Mamíferos
6.
J Colloid Interface Sci ; 642: 810-819, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37043939

RESUMO

Anticancer peptides (ACPs) are promising antitumor drugs owning to their great cancer cell targeting and anticancer effects as well as low drug resistance. However, many of the ACPs have non-specific toxicity and can be easily degraded by the enzymes after administration. Therefore, drug delivery systems (DDSs) are required to shield these peptides from degradation and induce targeted delivery. In this paper, a high performance microfluidic device was used to fabricate the zeolitic imidazolate framework (ZIF-8) encapsulating an ACP (At3) recently developed by our group. The microfluidic device allowed for efficient and rapid mixing to generate ACP loaded nanoparticles (NPs) with controllable properties at high production rate (120 mL/min) and high encapsulation efficiency. The ZIF-8 NPs synthesised by microfluidic processing showed lower polydispersity index (PDI) than the conventional method, demonstrating an improved size uniformity. Encapsulating At3 into the ZIF-8 (At3@ZIF-8) significantly reduced the hemolytic effect and provided a pH-controlled release of At3 peptide. At3@ZIF-8 showed higher anticancer effect than the unloaded peptide at the same concentration due to the enhanced cell uptake by the ZIF-8 NPs. The NPs were able to inhibit the growth of the multicellular tumour spheroids (MCTSs) and damage the mitochondrial membrane of the MCF-7 breast cancer cells. In vivo experiments demonstrated that the At3@ZIF-8 NPs inhibited the growth of MCF-7 tumours in nude mice without changing the biochemical properties of the blood or the histopathological properties of vital organs. Therefore, the development of At3 loaded NPs provides an alternative approach in ACP delivery which can broaden the application of ACP-based cancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Zeolitas , Animais , Camundongos , Zeolitas/química , Camundongos Nus , Microfluídica , Antineoplásicos/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
7.
Biomater Sci ; 11(8): 2845-2859, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36857655

RESUMO

Antimicrobial resistance (AMR) has become a major global health concern prompting the quest for new antibiotics with higher efficiency and less proneness to drug resistance. Antimicrobial peptides (AMPs) offer such properties and have therefore gained increasing attention as a new generation of antibiotics to overcome AMR. In an attempt to develop new highly selective and highly efficient antifungal peptides, a sequence (named At1) originating from the natural AMP Ponericin-W1 was used as a lead sequence for rational design of a series of short cationic antifungal peptides named At2-At12. The charge, hydrophobicity, and terminal amino acids of the peptides were modified in a systematic way to investigate the effect of such structural changes on the biological activity of the peptides. Among all the designed peptides, three peptides (coded as At3, At5 and At10) exhibited high antifungal activity without any significant hemolytic activity in human red blood cells. The higher selectivity of these peptides for fungal cells over human cells was further confirmed in cocultures of Candida albicans and human foreskin fibroblasts. These three peptides lacked any hydrophilic residues in their hydrophobic domain, contained lysine residues in their hydrophilic region and had an overall charge of 7+. They also had a higher helical content in microbial membrane mimicking DPPG SUVs than the rest of the peptides. The fungi did not develop any resistance to the designed antifungal peptides even after 25 generations indicating low AMR. At5 was also used in vivo for the treatment of wounds infected with Candida albicans in mice and showed superiority over fluconazole for treating infection and accelerating wound healing. There was an interplay between the hydrophobicity and positive charge density to determine the antifungal activity of the peptides. The results from this study suggest this class of antifungal peptides as promising candidates for antifungal drugs with high efficiency, high biocompatibility and low propensity for drug resistance.


Assuntos
Antifúngicos , Peptídeos Antimicrobianos , Humanos , Camundongos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Candida albicans , Antibacterianos/química
8.
Adv Colloid Interface Sci ; 314: 102866, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36898186

RESUMO

Peptide amphiphiles (PAs) are peptide-based molecules that contain a peptide sequence as a head group covalently conjugated to a hydrophobic segment, such as lipid tails. They can self-assemble into well-ordered supramolecular nanostructures such as micelles, vesicles, twisted ribbons and nanofibers. In addition, the diversity of natural amino acids gives the possibility to produce PAs with different sequences. These properties along with their biocompatibility, biodegradability and a high resemblance to native extracellular matrix (ECM) have resulted in PAs being considered as ideal scaffold materials for tissue engineering (TE) applications. This review introduces the 20 natural canonical amino acids as building blocks followed by highlighting the three categories of PAs: amphiphilic peptides, lipidated peptide amphiphiles and supramolecular peptide amphiphile conjugates, as well as their design rules that dictate the peptide self-assembly process. Furthermore, 3D bio-fabrication strategies of PAs hydrogels are discussed and the recent advances of PA-based scaffolds in TE with the emphasis on bone, cartilage and neural tissue regeneration both in vitro and in vivo are considered. Finally, future prospects and challenges are discussed.


Assuntos
Nanofibras , Nanoestruturas , Engenharia Tecidual , Peptídeos/química , Nanoestruturas/química , Nanofibras/química , Hidrogéis
9.
Nanoscale ; 15(8): 3780-3795, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723377

RESUMO

Ansamitocin P-3 (AP-3) is a promising anticancer agent. However, its low solubility has limited its biomedical applications. The preparation of liposomal formulations for the delivery of low solubility drugs using the microfluidic platform has attracted increasing attention in the pharmaceutical industry. In addition, photodynamic therapy (PDT) is a non-invasive and efficient strategy for the treatment of cancers, making photodynamic liposomes one of the most promising drug delivery systems (DDSs). In this study, a recently developed microfluidic device (swirl mixer) was used for the manufacturing of temperature-sensitive liposomes (TSL) that can be activated by near-infrared stimulation for the treatment of breast cancer. Changing the processing parameters of the microfluidic system allowed for optimizing the properties of the produced liposomes (e.g., particle size and size distribution). For the first time, the anticancer drug AP-3 and the photosensitizer indocyanine green (ICG) were encapsulated into TSL (AP-3/ICG@TSL) during microfluidic processing. The results show that AP-3/ICG@TSL are biocompatible and can significantly reduce the toxicity of AP-3 to normal tissues. After infrared laser irradiation, the heat generated from ICG not only resulted in the cancer cell toxicity, but also facilitated the release of AP-3 in tumor cells. AP-3/ICG@TSL with infrared laser irradiation was found to be able to significantly inhibit the growth of MCF-7 multicellular tumor spheroids (MCTSs) in vitro and MCF-7 tumors subcutaneously inoculated in nude mice as an in vivo model. In addition, it also showed no signs of damage to other organs. The current results demonstrated that the AP-3/ICG@TSL fabricated using the microfluidic swirl mixer is a promising DDS for breast cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Lipossomos/uso terapêutico , Camundongos Nus , Microfluídica , Doxorrubicina , Fotoquimioterapia/métodos , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Verde de Indocianina , Raios Infravermelhos , Linhagem Celular Tumoral
10.
Biochem Biophys Res Commun ; 652: 35-45, 2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-36809703

RESUMO

Surfactant like peptides (SLPs) are a class of amphiphilic peptides widely used for drug delivery and tissue engineering. However, there are very few reports on their application for gene delivery. The current study was aimed at development of two new SLPs, named (IA)4K and (IG)4K, for selective delivery of antisense oligodeoxynucleotides (ODNs) and small interfering RNA (siRNA) to cancer cells. The peptides were synthesized by Fmoc solid phase synthesis. Their complexation with nucleic acids was studied by gel electrophoresis and DLS. The transfection efficiency of the peptides was assessed in HCT 116 colorectal cancer cells and human dermal fibroblasts (HDFs) using high content microscopy. The cytotoxicity of the peptides was assessed by standard MTT test. The interaction of the peptides with model membranes was studied using CD spectroscopy. Both SLPs delivered siRNA and ODNs to HCT 116 colorectal cancer cells with high transfection efficiency which was comparable to the commercial lipid-based transfection reagents, but with higher selectivity for HCT 116 compared to HDFs. Moreover, both peptides exhibited very low cytotoxicity even at high concentrations and long exposure time. The current study provides more insights into the structural features of SLPs required for nucleic acid complexation and delivery and can therefore serve as a guide for the rational design of new SLPs for selective gene delivery to cancer cells to minimize the adverse effects in healthy tissues.


Assuntos
Neoplasias Colorretais , Tensoativos , Humanos , Peptídeos/química , Técnicas de Transferência de Genes , Transfecção , RNA Interferente Pequeno/química , Lipoproteínas
11.
Anal Chem ; 95(2): 1201-1209, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36541430

RESUMO

Accurately obtaining information on the heterogeneity of CTCs at the single-cell level is a very challenging task that may facilitate cancer pathogenesis research and personalized therapy. However, commonly used multicellular population capture and release assays tend to lose effective information on heterogeneity and cannot accurately assess molecular-level studies and drug resistance assessment of CTCs in different stages of tumor metastasis. Herein, we designed a near-infrared (NIR) light-responsive microfluidic chip for biocompatible single-cell manipulation and study the heterogeneity of CTCs by a combination of the lateral flow microarray (LFM) chip and photothermal response system. First, immunomagnetic labeling and a gradient magnetic field were combined to distribute CTCs in different regions of the chip according to the content of surface markers. Subsequently, the LFM chip achieves high single-cell capture efficiency and purity (even as low as 5 CTCs per milliliter of blood) under the influence of lateral fluid and magnetic fields. Due to the rapid dissolution of the gelatin capture structure at 37 °C and the photothermal properties of gold nanorods, the captured single CTC cell can be recovered in large quantities at physiological temperature or released individually at a specific point by NIR. The multifunctional NIR-responsive LFM chip demonstrates excellent performance in capture and site release of CTCs with high viability, which provides a robust and versatile means for CTCs heterogeneity study at the single-cell level.


Assuntos
Nanotubos , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Linhagem Celular Tumoral , Microfluídica , Análise de Sequência com Séries de Oligonucleotídeos , Separação Celular
12.
Colloids Surf B Biointerfaces ; 220: 112887, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191410

RESUMO

Photothermal therapy using laser activated gold nanorods (AuNRs) is a strategy for treatment of bacterial infections. Nevertheless, it also exerts cytotoxicity against human cells which leads to adverse effects in healthy human tissues and limits the applicable dose. Functionalization of AuNRs with a selective antimicrobial peptide (AMP) with higher selectivity for bacteria over human cells is a promising strategy for increasing the selectivity of the AuNRs for bacteria, hence increasing their cellular uptake by the bacteria in order to achieve stronger antimicrobial effects with lower doses of AuNRs without damaging the human cells. In this study, the surface of AuNRs was functionalized with a short AMP named C-At5 and the efficiency of the peptide functionalized AuNRs in killing gram-positive and gram-negative bacteria was evaluated in vitro as well as their potential for facilitating wound healing in a mouse model of wound infection with and without application of laser. The peptide-conjugated AuNRs exhibited higher antibacterial activity in vitro compared to the plain AuNRs both in the presence and absence of laser irradiation. Furthermore, AuNR@C-At5 had very low toxicity against human skin fibroblasts and human red blood cells indicating their higher biocompatibility compared to the plain AuNRs. Treatment of wounded mice with AuNR@C-At5 accelerated the wound healing process which was further enhanced by applying laser. The system developed in this study has great potential for customization for specific antimicrobial or antifungal therapy via conjugation of different types of AMPs with higher selectivity and can therefore serve as a guide for any future attempts in this regard.


Assuntos
Ouro , Nanotubos , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos Antimicrobianos , Ouro/farmacologia , Ouro/uso terapêutico , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Peptídeos , Terapia Fototérmica , Cicatrização
13.
Colloids Surf B Biointerfaces ; 220: 112841, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36174494

RESUMO

Anticancer peptides (ACPs) have attracted increasing attention in cancer therapy due to their unique mechanism of action on cancer cells. The main challenge is to establish the correlation between their physicochemical properties and their selectivity and anticancer effect, leading to a clear design strategy. In this study, a series of new α-helical short peptides (coded At1-At12) with different anticancer activities were systematically designed with different amphiphilicity based on a natural α-helical antimicrobial peptide (AMP) derived from ant. Three of the designed peptides, At7, At10 and At11, showed considerable anticancer activity with low toxicity to normal skin fibroblasts. The high selectivity of the peptides is attributed to their balanced amphiphilicity and cationic nature which favours binding to the outer membrane of negatively charged cancer cells over the neutral membrane of normal mammalian cells. In addition to rapid membrane penetration, the designed peptides also damaged the mitochondria and induced mitochondrial membrane depolarization. Moreover, these peptides were found to induce apoptosis in cancer cells by up-regulating the expression of apoptotic proteins Bax and Caspase-3, down-regulating the apoptotic protein Bcl-2, and activating the Caspase enzyme-linked reaction. The results of this study reveal the potential of these peptides for clinical applications, and provide a guidance for further development of highly selective anticancer medications.


Assuntos
Antineoplásicos , Peptídeos , Animais , Peptídeos/farmacologia , Peptídeos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Conformação Proteica em alfa-Hélice , Apoptose , Cátions/química , Mamíferos
14.
Biomater Sci ; 10(16): 4635-4655, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35796642

RESUMO

Hydroxyapatite (HA) is a promising scaffold material for the treatment of bone defects. However, the lack of angiogenic properties and undesirable mechanical properties (such as fragility) limits the application of HA. Nanoattapulgite (ATP) is a nature-derived clay mineral and has been proven to be a promising bioactive material for bone regeneration due to its ability to induce osteogenesis. In this study, polyvinyl alcohol/collagen/ATP/HA (PVA/COL/ATP/HA) scaffolds were printed. Mouse bone marrow mesenchymal stem/stromal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) were used in vitro to assess the biocompatibility and the osteogenesis and vascularization induction potentials of the scaffolds. Subsequently, in vivo micro-CT and histological staining were carried out to evaluate new bone formation in a rabbit tibial defect model. The in vitro results showed that the incorporation of ATP increased the printing fidelity and mechanical properties, with values of compressive strengths up to 200% over raw PC-H scaffolds. Simultaneously, the expression levels of osteogenic-related genes and vascularization-related genes were significantly increased after the incorporation of ATP. The in vivo results showed that the PVA/COL/ATP/HA scaffolds exhibited synergistic effects on promoting vascularization and bone formation. The combination of ATP and HA provides a promising strategy for vascularized bone tissue engineering.


Assuntos
Durapatita , Osteogênese , Trifosfato de Adenosina , Animais , Regeneração Óssea , Durapatita/farmacologia , Células Endoteliais , Humanos , Camundongos , Neovascularização Patológica , Coelhos , Tíbia , Engenharia Tecidual/métodos , Alicerces Teciduais
15.
Biomater Sci ; 10(17): 4848-4865, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35861280

RESUMO

Antimicrobial peptides (AMPs) or host-defence peptides act by penetrating and disrupting the bacterial membranes and are therefore less prone to antimicrobial resistance (AMR) compared to conventional antibiotics. However, there are still many challenges in the clinical application of the naturally occurring AMPs which necessitates further studies to establish the relationship between the chemical structure of AMPs and their antimicrobial activity and selectivity. Herein, we report a study on the relationship between the chemical structure and the biological activity of a series of rationally designed AMPs derived from Ponericin-W1, a naturally occurring AMP from ants. The peptides were designed by modification of the hydrophobic and hydrophilic regions of the lead peptide sequence in a systematic way. Their antibacterial and hemolytic activities were determined in vitro. The antibacterial activity of a representative peptide, At5 was also tested in a mouse model of skin wound infection. Furthermore, the relationship between the physicochemical properties of the peptides and their antibacterial activity was investigated. Replacing the cationic amino acids in the hydrophobic region of the peptides with hydrophobic amino acids enhanced their antibacterial activity and increasing the number of cationic amino acids in the hydrophilic region reduced their toxicity to human red blood cells and thus improved their selectivity for bacteria. Four of the designed peptides, coded as At3, At5, At8, and At10, displayed considerable antibacterial activity and high selectivity for bacteria. At5 also accelerated the wound healing in mice indicating high in vivo efficiency of this peptide. The peptides were more effective against Gram-negative bacteria and no AMR was developed against them in the bacteria even after 25 generations. The results from this study can provide a better understanding of the structural features required for strong antibacterial activity and selectivity, and serve as a guide for the future rational design of AMPs.


Assuntos
Peptídeos Antimicrobianos , Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Engenharia de Proteínas
16.
Int J Pharm ; 622: 121857, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35623489

RESUMO

Liposomes have been widely used in nanomedicine for the delivery of hydrophobic and hydrophilic anticancer agents. The most common applications of these formulations are vaccines and anticancer formulations (e.g., mRNA, small molecule drugs). However, large-scale production with precise control of size and size distribution of the lipid-based drug delivery systems (DDSs) is one of the major challenges in the pharmaceutical industry. In this study, we used newly designed microfluidic swirl mixers with simple 3D mixing chamber structures to prepare liposomes at a larger scale (up to 320 mL/min or 20 L/h) than the commercially available devices. This design demonstrated high productivity and better control of liposome size and polydispersity index (PDI) than conventional liposome preparation methods. The microfluidic swirl mixer devices were used to produce curcumin-loaded liposomes under different processing conditions which were later characterized and studied in vitro to evaluate their efficiency as DDSs. The obtained results demonstrated that the liposomes can effectively deliver curcumin into cancer cells. Therefore, the microfluidic swirl mixers are promising devices for reproducible and scalable manufacturing of DDSs.


Assuntos
Curcumina , Neoplasias , Sistemas de Liberação de Medicamentos , Lipossomos/química , Microfluídica/métodos , Nanomedicina , Tamanho da Partícula
17.
J Colloid Interface Sci ; 623: 96-108, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35576653

RESUMO

HYPOTHESIS: Microscopic self-propelled motors (SPMs) are an area of active research, but very little investigation has been conducted on millimetre-scale or macroscopic SPMs and exploring their potential in biomedical research. In this study, we tested if 3D reactive inkjet (RIJ) printing could be used for precise fabrication of millimetre-scale self-propelled motors (SPMs) with well-defined shapes from regenerated silk fibroin (RSF) by converting water soluble RSF (silk I) to insoluble silk fibroin (silk II). Secondly, we compared the different propulsion behaviour of the SPMs to put forward the best geometry and propulsion mechanism for potential applications in enhancing the sensitivity of diffusion-rate limited biomedical assays by inducing fluid flow. EXPERIMENTS: SPMs with four different geometric shapes and propelled by two different mechanisms (catalysis and surface tension gradient) were fabricated by 3D RIJ printing and compared. For bubble propulsion, the structures were selectively doped in specific regions with the enzyme catalase in order to produce motion via bubble generation and detachment in hydrogen peroxide solutions. For surface tension propulsion, PEG400-doped structures were propelled through surface tension gradients caused by leaching of PEG400 surfactant in deionized water. FINDINGS: The results demonstrated the ability of 3D inkjet printing to fabricate SPMs with desired propulsion mechanism and fine-tune the propulsion by precisely fabricating the different geometric shapes. The resulting 3D structures were capable of generating motion without external actuation, thereby enabling applications in biomedicine such as micro-stirring small fluid volumes to enhance biological assay sensitivity. The surface tension gradient caused by the leaching of surfactant led to faster propulsion velocities with smooth deceleration, whereas, in comparison, catalysis-induced bubble propulsion tended to be jerky and uneven in deceleration, and therefore less suitable for aforementioned applications. Computational fluid dynamic simulations were used to compare the various experimental SPMs ability to enhance mixing when deployed within 96-well plate microwells, to reveal the effect of both SPM shape and motion character on performance, and show viability for small scale mixing applications.


Assuntos
Fibroínas , Fibroínas/química , Impressão Tridimensional , Seda/química , Tensoativos , Água
18.
Colloids Surf B Biointerfaces ; 216: 112549, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35636321

RESUMO

Silk fibroin is an FDA approved biopolymer for clinical applications with great potential in nanomedicine. However, silk-based nanoformulations are still facing several challenges in processing and drug delivery efficiency (such as reproducibility and targetability), especially in cancer therapy. To address these challenges, robust and controllable production methods are required for generating nanocarriers with desired properties. This study aimed to develop a novel method for the production of peptide-functionalized magnetic silk nanoparticles with higher selectivity for cancer cells for targeted delivery of the hydrophobic anticancer agent ASC-J9. A new microfluidic device with a swirl mixer was designed to fabricate magnetic silk nanoparticles (MSNP) with desired size and narrow size distribution. The surface of MSNPs was functionalized with a cationic amphiphilic anticancer peptide, G(IIKK)3I-NH2 (G3), to enhance their selectivity towards cancer cells. The G3-MSNPs increased the cellular uptake and anticancer activity of G3 in HCT 116 colorectal cancer cells compared to free G3. Moreover, the G3-MSNPs exhibited considerably higher cellular uptake and cytotoxicity in HCT 116 colorectal cancer cells compared to normal cells (HDFs). Encapsulating ASC-J9 in G3-MSNPs resulted in augmented anticancer activity compared to free ASC-J9 and non-functionalized ASC-J9 loaded MSNPs within its biological half-life. Hence, functionalizing MSNPs with G3 enabled targeted delivery of ASC-J9 to cancer cells and enhanced its anticancer effect. Functionalization of nanoparticles with anticancer peptides could be regarded as a new strategy for targeted delivery and enhanced efficiency of anticancer drugs. Furthermore, the microfluidic device introduced in this paper offers a robust and reproducible method for fabrication of small sized homogenous nanoparticles.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Nanopartículas , Antineoplásicos/química , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Fenômenos Magnéticos , Nanopartículas/química , Peptídeos/farmacologia , Reprodutibilidade dos Testes , Dióxido de Silício/química , Seda
19.
Int J Pharm ; 620: 121762, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35472511

RESUMO

Nanoparticles (NPs) have great potential as efficient drug delivery systems (DDSs) that have been widely used in cancer therapy and vaccines especially in the past decade. The rise in demand from the pharmaceutical industry drives the growth of the global NPs market. However, complex production processes have hindered the market growth. Therefore, the development of advanced preparation techniques such as microfluidics is required to improve productivity and controllability. In this study, we present a novel microfluidic design (swirl mixer) that helps accelerating the translation of many DDSs from laboratory to clinical application. The new swirl mixer provides high production rate, reproducibility, and precise control of particle size with low polydispersity index (PDI). To assess the performance of the swirl mixer, two different types of nanoformulations were used: silk nanoparticles (SNPs) and lipid nanoparticles (LNPs). The microfluidic device produced NPs efficiently with high productivity and allowed for tuning the mean size and size distribution by changing multiple processing parameters.


Assuntos
Microfluídica , Nanopartículas , Lipossomos , Microfluídica/métodos , Tamanho da Partícula , Reprodutibilidade dos Testes
20.
ACS Appl Mater Interfaces ; 14(14): 15942-15955, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353482

RESUMO

Biomaterial-immune system interactions play an important role in postimplantation osseointegration to retain the functionality of healthy and intact bones. Therefore, appropriate osteoimmunomodulation of implants has been considered and validated as an efficient strategy to alleviate inflammation and enhance new bone formation. Here, we fabricated a nanostructured PCL/PVP (polycaprolactone/polyvinylpyrrolidone) electrospinning scaffold for cell adhesion, tissue ingrowth, and bone defect padding. In addition, telmisartan, an angiotensin 2 receptor blocker with distinct immune bioactivity, was doped into PCL-/PVP-electrospun scaffolds at different proportions [1% (TPP-1), 5% (TPP-5), and 10% (TPP-10)] to investigate its immunomodulatory effects and osteoinductivity/conductivity. Telmisartan-loaded scaffolds displayed in vitro anti-inflammatory bioactivity on lipopolysaccharide-induced M1 macrophages by polarizing them to an M2-like phenotype and exhibited pro-osteogenic properties on bone marrow-derived mesenchymal stem cells (BMSCs). Histological analysis and micro-CT results of a rat skull defect model also showed that the telmisartan-loaded scaffolds induced a higher M2/M1 ratio, less inflammatory infiltration, and better bone regenerative patterns. Furthermore, activation of the BMP2 (bone morphogenetic protein-2)-Smad signaling pathway was found to be dominant in telmisartan-loaded scaffold-mediated macrophage-BMSC interactions. These findings indicate that telmisartan incorporation with PCL/PVP nanofibrous scaffolds is a potential therapeutic strategy for promoting bone healing by modulating M1 macrophages to a more M2 phenotype at early stages of postimplantation.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Animais , Diferenciação Celular , Imunomodulação , Macrófagos/metabolismo , Osteogênese/fisiologia , Ratos , Telmisartan/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...