Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
2.
Nat Genet ; 56(7): 1434-1445, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38969833

RESUMO

Many variants that we inherit from our parents or acquire de novo or somatically are rare, limiting the precision with which we can associate them with disease. We performed exhaustive saturation genome editing (SGE) of BAP1, the disruption of which is linked to tumorigenesis and altered neurodevelopment. We experimentally characterized 18,108 unique variants, of which 6,196 were found to have abnormal functions, and then used these data to evaluate phenotypic associations in the UK Biobank. We also characterized variants in a large population-ascertained tumor collection, in cancer pedigrees and ClinVar, and explored the behavior of cancer-associated variants compared to that of variants linked to neurodevelopmental phenotypes. Our analyses demonstrated that disruptive germline BAP1 variants were significantly associated with higher circulating levels of the mitogen IGF-1, suggesting a possible pathological mechanism and therapeutic target. Furthermore, we built a variant classifier with >98% sensitivity and specificity and quantify evidence strengths to aid precision variant interpretation.


Assuntos
Edição de Genes , Mutação em Linhagem Germinativa , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Humanos , Mutação em Linhagem Germinativa/genética , Ubiquitina Tiolesterase/genética , Proteínas Supressoras de Tumor/genética , Edição de Genes/métodos , Neoplasias/genética , Predisposição Genética para Doença , Linhagem , Feminino , Masculino
3.
Nat Genet ; 56(7): 1397-1411, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951643

RESUMO

Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease.


Assuntos
Frequência do Gene , Menarca , Puberdade , Humanos , Feminino , Menarca/genética , Puberdade/genética , Animais , Herança Multifatorial/genética , Camundongos , Estudo de Associação Genômica Ampla , Adolescente , Puberdade Precoce/genética , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Puberdade Tardia/genética , Criança
4.
Mol Immunol ; 172: 76-84, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917598

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC), one of the malignancies with a wide expression of stress ligands recognized by Vδ1γδ T cells, has received much attention in adoptive immunotherapy of γδ T cells. In this study, we aimed to identify the potential anti-tumor Vδ1γδ T subpopulations in HCC. METHODS: Healthy donors (HDs) and HCC patients were recruited from the Affiliated Cancer Hospital of Zhengzhou University. Blood and tumor tissue samples were obtained respectively. Bioinformatics methods were used to analyze total γδ T cells and subsets infiltration, overall survival of HCC patients with high and low infiltration level of Vδ1γδ T cells, and IFNG, granzyme A, granzyme B and perforin expression in TRDV1high/lowCD69high/low groups. CD69 expression and Vδ1γδT cells infiltration in HCC were detected by immunofluorescence. Phenotypic analysis of Vδ1γδ T cells in blood and tumor tissue samples were performed by flow cytometry. RESULTS: Vδ1γδ T cells infiltrating in HCC were associated with better clinical outcome. Study in tumor micro-environment (TME) of HCC demonstrated that not total Vδ1γδ T but CD69+ Vδ1γδ subset infiltration was associated with smaller tumor volume. Moreover, HCC patients simultaneously with high TRDV1 and CD69 expression produced more effector molecules and had longer survival time. Since Vδ1γδ T cells in the tumor microenvironment were often difficult to access, we demonstrated that CD69+ Vδ1γδ T cells also existed in peripheral blood mononuclear cells (PBMC) of HCC and displayed enhanced cytotoxic potentials than HDs. Finally, we investigated the functions and found that CD69+ Vδ1γδ T cells exhibited stronger tumor reactivities when challenged by tumor cells. CONCLUSIONS: CD69+ Vδ1γδ T cells are functional Vδ1γδ T cell subsets in patients with HCC. Circulating CD69+ Vδ1γδ T cell is a promising candidate in immunotherapy of HCC.

5.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853935

RESUMO

Background Pulmonary fibrosis (PF) is a rare lung disease with diverse pathogenesis and multiple interconnected underlying biological mechanisms. Mosaic loss of chromosome Y (mLOY) is one of the most common forms of acquired chromosome abnormality in men, which has been reported to be associated with increased risk of various chronic progressive diseases including fibrotic diseases. However, the exact role of mLOY in the development of PF remains elusive and to be elucidated. Methods: We adopted three complementary approaches to explore the role of mLOY in the pathogenesis of PF. We used copy number on chromosome Y to estimate mLOY comparing patients in PROFILE and gnomAD cohorts and between cases and control patients from the GE100KGP cohort. Correlation of mLOY with demographic and clinical variables was tested using patients from PROFILE cohort. Lung single-cell transcriptomic data were analysed to assess the cell types implicated in mLOY. We performed Mendelian randomisation to examine the causal relationship between mLOY, IPF, and telomere length. Results: The genetic analysis suggests that mLOY is found in PF from both case cohorts but when compared with an age matched population the effect is minimal (P = 0.0032). mLOY is related to age (P = 0.00021) and shorter telomere length (P = 0.0081) rather than PF severity or progression. Single-cell analysis indicates that mLOY appears to be found primarily in immune cells and appears to be related to presence and severity of fibrosis. Mendelian randomisation demonstrates that mLOY is not on the causal pathway for IPF, but partial evidence supports that telomere shortening is on the causal pathway for mLOY. Conclusion: Our study confirms the existence of mLOY in PF patients and suggests that mLOY is not a major driver of IPF. The combined evidence suggests a triangulation model where telomere shortening leads to both IPF and mLOY.

6.
Nature ; 631(8019): 134-141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867047

RESUMO

Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.


Assuntos
Aneuploidia , Cromossomos Humanos X , Células Clonais , Leucócitos , Mosaicismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Doenças Autoimunes/genética , Bancos de Espécimes Biológicos , Segregação de Cromossomos/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Células Clonais/metabolismo , Células Clonais/patologia , Exoma/genética , Proteínas F-Box/genética , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Leucemia/genética , Leucócitos/metabolismo , Modelos Genéticos , Herança Multifatorial/genética , Mutação de Sentido Incorreto/genética
7.
Cell ; 187(12): 3024-3038.e14, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38781969

RESUMO

Plants frequently encounter wounding and have evolved an extraordinary regenerative capacity to heal the wounds. However, the wound signal that triggers regenerative responses has not been identified. Here, through characterization of a tomato mutant defective in both wound-induced defense and regeneration, we demonstrate that in tomato, a plant elicitor peptide (Pep), REGENERATION FACTOR1 (REF1), acts as a systemin-independent local wound signal that primarily regulates local defense responses and regenerative responses in response to wounding. We further identified PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the receptor perceiving REF1 signal for plant regeneration. REF1-PORK1-mediated signaling promotes regeneration via activating WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1), a master regulator of wound-induced cellular reprogramming in plants. Thus, REF1-PORK1 signaling represents a conserved phytocytokine pathway to initiate, amplify, and stabilize a signaling cascade that orchestrates wound-triggered organ regeneration. Application of REF1 provides a simple method to boost the regeneration and transformation efficiency of recalcitrant crops.


Assuntos
Proteínas de Plantas , Regeneração , Transdução de Sinais , Solanum lycopersicum , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos/metabolismo
8.
PeerJ Comput Sci ; 10: e2005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686010

RESUMO

Training with soft labels instead of hard labels can effectively improve the robustness and generalization of deep learning models. Label smoothing often provides uniformly distributed soft labels during the training process, whereas it does not take the semantic difference of labels into account. This article introduces discrimination-aware label smoothing, an adaptive label smoothing approach that learns appropriate distributions of labels for iterative optimization objectives. In this approach, positive and negative samples are employed to provide experience from both sides, and the performances of regularization and model calibration are improved through an iterative learning method. Experiments on five text classification datasets demonstrate the effectiveness of the proposed method.

9.
Nat Genet ; 56(4): 579-584, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575728

RESUMO

Obesity is a major risk factor for many common diseases and has a substantial heritable component. To identify new genetic determinants, we performed exome-sequence analyses for adult body mass index (BMI) in up to 587,027 individuals. We identified rare loss-of-function variants in two genes (BSN and APBA1) with effects substantially larger than those of well-established obesity genes such as MC4R. In contrast to most other obesity-related genes, rare variants in BSN and APBA1 were not associated with normal variation in childhood adiposity. Furthermore, BSN protein-truncating variants (PTVs) magnified the influence of common genetic variants associated with BMI, with a common variant polygenic score exhibiting an effect twice as large in BSN PTV carriers than in noncarriers. Finally, we explored the plasma proteomic signatures of BSN PTV carriers as well as the functional consequences of BSN deletion in human induced pluripotent stem cell-derived hypothalamic neurons. Collectively, our findings implicate degenerative processes in synaptic function in the etiology of adult-onset obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Hepatopatias , Proteínas do Tecido Nervoso , Adulto , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Obesidade/complicações , Obesidade/genética , Proteômica
10.
medRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38633783

RESUMO

Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. Genome-wide association studies of birth weight have highlighted associated variants in more than 200 regions of the genome, but the causal genes are mostly unknown. Rare genetic variants with robust evidence of association are more likely to point to causal genes, but to date, only a few rare variants are known to influence birth weight. We aimed to identify genes that harbour rare variants that impact birth weight when carried by either the fetus or the mother, by analysing whole exome sequence data in UK Biobank participants. We annotated rare (minor allele frequency <0.1%) protein-truncating or high impact missense variants on whole exome sequence data in up to 234,675 participants with data on their own birth weight (fetal variants), and up to 181,883 mothers who reported the birth weight of their first child (maternal variants). Variants within each gene were collapsed to perform gene burden tests and for each associated gene, we compared the observed fetal and maternal effects. We identified 8 genes with evidence of rare fetal variant effects on birth weight, of which 2 also showed maternal effects. One additional gene showed evidence of maternal effects only. We observed 10/11 directionally concordant associations in an independent sample of up to 45,622 individuals (sign test P=0.01). Of the genes identified, IGF1R and PAPPA2 (fetal and maternal-acting) have known roles in insulin-like growth factor bioavailability and signalling. PPARG, INHBE and ACVR1C (all fetal-acting) have known roles in adipose tissue regulation and rare variants in the latter two also showed associations with favourable adiposity patterns in adults. We highlight the dual role of PPARG in both adipocyte differentiation and placental angiogenesis. NOS3, NRK, and ADAMTS8 (fetal and maternal-acting) have been implicated in both placental function and hypertension. Analysis of rare coding variants has identified regulators of fetal adipose tissue and fetoplacental angiogenesis as determinants of birth weight, as well as further evidence for the role of insulin-like growth factors.

11.
Chin Med J (Engl) ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445356

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD. METHODS: We generated a microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t-test were used to analyze the data. RESULTS: Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes. CONCLUSIONS: Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.

13.
Oncologist ; 29(7): e877-e886, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537665

RESUMO

BACKGROUND: According to the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) criteria, both immunohistochemical HER2 (3+) and HER2 (2+)/in situ hybridization (ISH) amplified [HER2 (2+)/ISH+] breast cancers (BCs) fall under the HER2-positive BC category. However, there is a lack of studies exploring the difference of neoadjuvant therapeutic response between patients with HER2 (3+) and HER2 (2+)/ISH+ early BC. We aimed to evaluate the neoadjuvant therapeutic response, long-term outcome, and intrinsic subtype heterogeneity between HER2 (3+) and HER2 (2+)/ISH+ BC. METHODS: We examined 2 distinct cohorts. Cohort 1 (C1) encompassed 2648 patients with HER2-positive early BC diagnoses, and they received neoadjuvant therapy (NT) and surgery between January 1, 2009 and December 31, 2022, from the Shanghai Jiao Tong University Breast Cancer Data Base. Cohort 2 (C2) comprised 135 patients with early-stage HER2-positive BC who underwent NT and surgery at Henan Cancer Hospital from January 1, 2021, to December 31, 2022. These patients had available genomic and transcriptomic data at their disposal. C1 and C2 were further categorized into 2 patient cohorts as follows: (1) patients with IHC HER2 (3+) early BC [HER2 (3+) group], (2) patients with HER2 (2+)/ISH+ early BC [HER2 (2+)/ISH+ group]. Among those excluded from the analysis were patients < 18 years or >80 years of age. Clinicopathological parameters, long-term outcomes, and intrinsic subtypes were analyzed. RESULTS: In the C1 population, 83.7% had HER2 (3+) BC, while 16.3% had HER2 (2+)/ISH+ BC. Patients with HER2 (3+) had a significantly higher pathological complete response (PCR) rate (38.9%) than patients with HER2 (2+)/ISH+ (18.1%; P < .001), but the disease-free survival (DFS) was comparable after a median follow-up of 29 months (P = .556). The addition of trastuzumab or trastuzumab plus pertuzumab to neoadjuvant chemotherapy (NAC) improved PCR rates and DFS in HER2 (3+) BC but not in HER2 (2+)/ISH+ BC. In the C2 population, 97.75% HER2 (3+) and 52.17% HER2 (2+)/ISH+ were HER2 enriched (HER2E) subtype (P < .001). HER2E showed increased PCR rates compared to non-HER2E (P = .004). CONCLUSIONS: Compared to HER2 (3+) BC, the limited effectiveness of neoadjuvant trastuzumab and pertuzumab therapy for HER2 (2+)/ISH+ BC is due to subtype heterogeneity. Reassessment of targeted therapy efficacy in patients with HER2 (2+)/ISH+ BC is essential.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Receptor ErbB-2 , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Feminino , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Receptor ErbB-2/metabolismo , Adulto , Imuno-Histoquímica/métodos , Idoso , Estadiamento de Neoplasias
14.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481813

RESUMO

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Assuntos
Injúria Renal Aguda , Quinases Ciclina-Dependentes , Fator 1 de Crescimento de Fibroblastos , Elongação da Transcrição Genética , Animais , Humanos , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Quinases Ciclina-Dependentes/genética , Fator 1 de Crescimento de Fibroblastos/genética , Instabilidade Genômica , Rim
15.
Polymers (Basel) ; 16(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337214

RESUMO

In order to withstand high-temperature environments, ultra-high molecular weight polyethylene (UHMWPE) fibers with cooling properties are being increasingly used in personal thermal management textiles during the summer. However, there is relatively little research on its combination with knitting. In this paper, we combine UHMWPE fiber and knitting structure to investigate the impact of varying UHMWPE fiber content and different knitting structures on the heat and humidity comfort as well as the cooling properties of fabrics. For this purpose, five kinds of different proportions of UHMWPE and polyamide yarn preparation, as well as five kinds of knitted tissue structures based on woven tissue were designed to weave 25 knitted fabrics. The air permeability, moisture permeability, moisture absorption and humidity conduction, thermal property, and contact cool feeling property of the fabrics were tested. Then, orthogonal analysis and correlation analysis were used to statistically evaluate the properties of the fabrics statistically. The results show that as the UHMWPE content increases, the air permeability, heat conductivity, and contact cool feeling property of the fabrics improve. The moisture permeability, moisture absorption and humidity conductivity of fabrics containing UHMWPE are superior to those containing only polyamide. The air permeability, moisture permeability, and thermal conductivity of the fabrics formed by the tuck plating organization are superior to those of the flat needle plating and float wire plating organization. The fabric formed by 2 separate 2 float wire organization has the best moisture absorption, humidity conduction, contact cool feeling property.

16.
Plant J ; 118(2): 457-468, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198228

RESUMO

Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea mays L.), one of the most highly produced cereal crops worldwide, would have a global impact on human health. PLASTID TERMINAL OXIDASE (PTOX) genes play an important role in carotenoid metabolism; however, the possible function of PTOX in carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maize PTOX locus by forward- and reverse-genetic analyses. While most higher plant species possess a single copy of the PTOX gene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid-deficient phenotype. We identified mutations in the PTOX genes as being causal of the classic maize mutant, albescent1. Remarkably, overexpression of ZmPTOX1 significantly improved the content of carotenoids, especially ß-carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maize PTOX locus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine-tuning the expression of this gene could improve the nutritional value of cereal grains.


Assuntos
Oxirredutases , Zea mays , Humanos , Oxirredutases/genética , Oxirredutases/metabolismo , Zea mays/genética , Zea mays/metabolismo , Carotenoides/metabolismo , beta Caroteno/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Plastídeos/genética , Plastídeos/metabolismo
17.
Br J Nutr ; 131(1): 134-142, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37462503

RESUMO

The rate of adult severe obesity has been continually rising in the USA. While improving diet quality has been shown to reduce the risk of obesity, few studies have explored the differences in diet quality among adults with overweight and obesity by different weight statuses along with socio-demographic factors and physical activity using data from a nationally representative survey in the USA. The main goal of the study is to assess the diet quality of adults with overweight and obesity by examining differences in the Healthy Eating Index-2015 (HEI-2015) scores, using data from the 2015-2018 National Health and Nutrition Survey. Among 6746 adults with overweight and obesity (aged ≥ 20 years), severe obesity was prevalent (27 %), particularly among females, non-Hispanic Blacks and those with lower education and income. Compared to adults with overweight, adults with severe obesity had lower HEI-2015 total scores as well as component scores for total fruits, whole fruits, greens and beans, refined grains, sodium and saturated fats. Among adults with overweight and obesity, non-Hispanic Blacks had lower diet quality than non-Hispanic Asians; females had better diet quality than males; older adults had better diet quality than younger adults; adults with a college degree and above had better diet quality than those with less than a high school degree. Socio-demographic differences in diet quality and weight status should be considered in future obesity interventions to reduce adult severe obesity in the USA.


Assuntos
Obesidade Mórbida , Sobrepeso , Masculino , Feminino , Humanos , Idoso , Sobrepeso/epidemiologia , Inquéritos Nutricionais , Dieta , Obesidade/epidemiologia
18.
Eur J Nucl Med Mol Imaging ; 51(2): 369-379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37759096

RESUMO

PURPOSE: PD-L1 PET imaging, as a non-invasive procedure, can perform a real-time, dynamic and quantitative analysis of PD-L1 expression at tumor sites. In this study, we developed a novel peptide-based PET tracer, [68 Ga]Ga-AUNP-12, for preclinical and first-of-its-kind imaging of PD-L1 expression in patients. METHODS: Radiosynthesis of [68 Ga]Ga-AUNP-12 was conducted. Assays for cellular uptake and binding were conducted on the PANC02, CT26, and B16F10 cell lines. Preclinical models were used to investigate its biodistribution, imaging capacity, and pharmacokinetics. Furthermore, interferon-γ (IFN-γ) was used for development of an animal model with high PD-L1 expression for targeted PET imaging and efficacy evaluation of PD-L1 blocking therapy. In healthy volunteers and cancer patients, the PD-L1 imaging, radiation dosimetry, safety, and biodistribution were further evaluated. RESULTS: In vitro and in vivo animal studies showed that [68 Ga]Ga-AUNP-12 PET imaging displayed a high specificity in evaluating PD-L1 expression. The radiochemical yield of [68 Ga]Ga-AUNP-12 was 71.7 ± 8.2%. Additionally, its molar activity and radiochemical purity were satisfactory. The B16F10 tumor was visualized with the tumor uptake of 6.86 ± 0.71% ID/g and tumor-to-muscle ratio of 6.83 ± 0.36 at 60 min after [68 Ga]Ga-AUNP-12 injection. Furthermore, [68 Ga]Ga-AUNP-12 PET imaging could sensitively detect the PD-L1 dynamic changes in CT26 tumor xenograft models regulated by IFN-γ treatment, and correspondingly can effectively guide immunotherapy. Regarding radiation dosimetry, [68 Ga]Ga-AUNP-12 is safe for human use. The first human study found that [68 Ga]Ga-AUNP-12 can be rapidly cleared from blood and other nonspecific organs through the kidney excretion, leading to form a clear imaging contrast in the clinical framework. The specificity of [68 Ga]Ga-AUNP-12 was validated and tumor uptake strongly correlated with the high PD-L1 expression in patients with lung adenocarcinoma and oesophageal squamous cell carcinoma (OSCC). CONCLUSION: [68 Ga]Ga-AUNP-12 was successfully developed as a PD-L1-specific PET imaging tracer in preclinical and first-in-human studies.


Assuntos
Radioisótopos de Gálio , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
19.
Plant Methods ; 19(1): 136, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38012626

RESUMO

Lily is a bulbous plant with an endogenous dormancy trait. Fine-tuning bulb dormancy release is still a challenge in the development of bulb storage technology. In this study, we identified three regulators of symplastic transport, 2,3-Butanedione oxime (BDM), N-Ethyl maleimide (NEM), and 2-Deoxy-D-glucose (DDG), that also regulate bulb dormancy release. We demonstrated that BDM and DDG inhibited callose synthesis between cells and promoted symplastic transport and soluble sugars in the shoot apical meristem (SAM), eventually accelerating bulb dormancy release and flowering in lilies. Conversely, NEM had the opposite effect. These three regulators can be flexibly applied to either accelerate or delay lily bulb dormancy release.

20.
Front Oncol ; 13: 1277084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023180

RESUMO

Background: Colon cancer (CC) ranks as one of the leading causes of cancer-related mortality globally. Single-cell transcriptome sequencing (scRNA-seq) offers precise gene expression data for distinct cell types. This study aimed to utilize scRNA-seq and bulk transcriptome sequencing (bulk RNA-seq) data from CC samples to develop a novel prognostic model. Methods: scRNA-seq data was downloaded from the GSE161277 database. R packages including "Seurat", "Harmony", and "singleR" were employed to categorize eight major cell types within normal and tumor tissues. By comparing tumor and normal samples, differentially expressed genes (DEGs) across these major cell types were identified. Gene Ontology (GO) enrichment analyses of DEGs for each cell type were conducted using "Metascape". DEGs-based signature construction involved Cox regression and least absolute shrinkage operator (LASSO) analyses, performed on The Cancer Genome Atlas (TCGA) training cohort. Validation occurred in the GSE39582 and GSE33382 datasets. The expression pattern of prognostic genes was verified using spatial transcriptome sequencing (ST-seq) data. Ultimately, an established prognostic nomogram based on the gene signature and age was established and calibrated. Sensitivity to chemotherapeutic drugs was predicted with the "oncoPredict" R package. Results: Using scRNA-Seq data, we examined 33,213 cells, categorizing them into eight cell types within normal and tumor samples. GO enrichment analysis revealed various cancer-related pathways across DEGs in these cell types. Among the 55 DEGs identified via univariate Cox regression, four independent prognostic genes emerged: PTPN6, CXCL13, SPINK4, and NPDC1. Expression validation through ST-seq confirmed PTPN6 and CXCL13 predominance in immune cells, while SPINK4 and NPDC1 were relatively epithelial cell-specific. Creating a four-gene prognostic signature, Kaplan-Meier survival analyses emphasized higher risk scores correlating with unfavorable prognoses, confirmed across training and validation cohorts. The risk score emerged as an independent prognostic factor, supported by a reliable nomogram. Intriguingly, drug sensitivity analysis unveiled contrasting anti-cancer drug responses in the two risk groups, suggesting significant clinical implications. Conclusion: We developed a novel prognostic four-gene risk model, and these genes may act as potential therapeutic targets for CC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...