Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(33): eadg5211, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595039

RESUMO

A rapid induction of antiviral genes is critical for eliminating viruses, which requires activated transcription factors and opened chromatins to initiate transcription. However, it remains elusive how the accessibility of specific chromatin is regulated during infection. Here, we found that XAF1 functioned as an epigenetic regulator that liberated repressed chromatin after infection. Upon RNA virus infection, MAVS recruited XAF1 and TBK1. TBK1 phosphorylated XAF1 at serine-252 and promoted its nuclear translocation. XAF1 then interacted with TRIM28 with the guidance of IRF1 to the specific locus of antiviral genes. XAF1 de-SUMOylated TRIM28 through its PHD domain, which led to increased accessibility of the chromatin and robust induction of antiviral genes. XAF1-deficient mice were susceptible to RNA virus due to impaired induction of antiviral genes. Together, XAF1 acts as an epigenetic regulator that promotes the opening of chromatin and activation of antiviral immunity by targeting TRIM28 during infection.


Assuntos
Cromatina , Infecções por Vírus de RNA , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose , Cromatina/genética , Epigenômica , Imunidade , RNA , Infecções por Vírus de RNA/imunologia
2.
Genome Biol ; 24(1): 20, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726140

RESUMO

BACKGROUND: The CRISPR-Cas13 system is an RNA-guided RNA-targeting system and has been widely used in transcriptome engineering with potentially important clinical applications. However, it is still controversial whether Cas13 exhibits collateral activity in mammalian cells. RESULTS: Here, we find that knocking down gene expression using RfxCas13d in the adult brain neurons caused death of mice, which may result from the collateral activity of RfxCas13d rather than the loss of target gene function or off-target effects. Mechanistically, we show that RfxCas13d exhibits collateral activity in mammalian cells, which is positively correlated with the abundance of target RNA. The collateral activity of RfxCas13d could cleave 28s rRNA into two fragments, leading to translation attenuation and activation of the ZAKα-JNK/p38-immediate early gene pathway. CONCLUSIONS: These findings provide new mechanistic insights into the collateral activity of RfxCas13d in mammalian cells and warn that the biosafety of the CRISPR-Cas13 system needs further evaluation before application to clinical treatments.


Assuntos
Sistemas CRISPR-Cas , RNA , Animais , Camundongos , Sistema de Sinalização das MAP Quinases , RNA/genética , Transcriptoma
3.
PLoS Pathog ; 18(6): e1010599, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35658050

RESUMO

Regulation of chromatin structure and accessibility determines the transcription activities of genes, which endows the host with function-specific patterns of gene expression. Upon viral infection, the innate immune responses provide the first line of defense, allowing rapid production of variegated antiviral cytokines. Knowledge on how chromatin accessibility is regulated during host defense against viral infection remains limited. Our previous work found that the nuclear matrix protein SAFA surveilled viral RNA and regulated antiviral immune genes expression. However, how SAFA regulates the specific induction of antiviral immune genes remains unknown. Here, through integration of RNA-seq, ATAC-seq and ChIP-seq assays, we found that the depletion of SAFA specifically decreased the chromatin accessibility, activation and expression of virus induced genes. And mutation assays suggested that the RNA-binding ability of SAFA was essential for its function in regulating antiviral chromatin accessibility. RIP-seq results showed that SAFA exclusively bound with antiviral related RNAs following viral infection. Further, we combined the CRISPR-Cas13d mediated RNA knockdown system with ATAC-qPCR, and demonstrated that the binding between SAFA and according antiviral RNAs specifically mediated the openness of the corresponding chromatin and following robust transcription of antiviral genes. Moreover, knockdown of these associated RNAs dampened the accessibility of related genes in an extranuclear signaling pathway dependent manner. Interestingly, VSV infection cleaved SAFA protein at the C-terminus which deprived its RNA binding ability for immune evasion. Thus, our results demonstrated that SAFA and the interacting RNA products collaborated and remodeled chromatin accessibility to facilitate antiviral innate immune responses.


Assuntos
Antivirais , Viroses , Cromatina/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata/genética , RNA Viral
4.
Cell Rep ; 38(7): 110373, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172162

RESUMO

mRNA m6A modification is heavily involved in modulation of immune responses. However, its function in antiviral immunity is controversial, and how immune responses regulate m6A modification remains elusive. We here find TBK1, a key kinase of antiviral pathways, phosphorylates the core m6A methyltransferase METTL3 at serine 67. The phosphorylated METTL3 interacts with the translational complex, which is required for enhancing protein translation, thus facilitating antiviral responses. TBK1 also promotes METTL3 activation and m6A modification to stabilize IRF3 mRNA. Type I interferon (IFN) induction is severely impaired in METTL3-deficient cells. Mettl3fl/fl-lyz2-Cre mice are more susceptible to influenza A virus (IAV)-induced lethality than control mice. Consistently, Ythdf1-/- mice show higher mortality than wild-type mice due to decreased IRF3 expression and subsequently attenuated IFN production. Together, we demonstrate that innate signals activate METTL3 via TBK1, and METTL3-mediated m6A modification secures antiviral immunity by promoting mRNA stability and protein translation.


Assuntos
Antivirais/imunologia , Imunidade Inata , Metiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Metiltransferases/química , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Viroses/imunologia , Viroses/patologia
7.
Cell Host Microbe ; 29(2): 222-235.e4, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33388094

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented public health crisis. Evidence suggests that SARS-CoV-2 infection causes dysregulation of the immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced in SARS-CoV-2-infected animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could rescue the pneumonia with substantial reduction of viral loads in SARS-CoV-2-infected mice. Remarkably, Paquinimod treatment resulted in almost 100% survival in a lethal model of mouse coronavirus infection using the mouse hepatitis virus (MHV). A group of neutrophils that contributes to the uncontrolled pathological damage and onset of COVID-19 was dramatically induced by coronavirus infection. Paquinimod treatment could reduce these neutrophils and regain anti-viral responses, unveiling key roles of S100A8/A9 and aberrant neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention.


Assuntos
Alarminas/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Neutrófilos/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Animais , COVID-19/metabolismo , COVID-19/virologia , Modelos Animais de Doenças , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo , Transcriptoma , Carga Viral
8.
Mol Biomed ; 2(1): 30, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35006471

RESUMO

The innate immune system is the first line of host defense, which responds rapidly to viral infection. Innate recognition of viruses is mediated by a set of pattern recognition receptors (PRRs) that sense viral genomic nucleic acids and/or replication intermediates. PRRs are mainly localized either to the endosomes, the plasma membrane or the cytoplasm. Recent evidence suggested that several proteins located in the nucleus could also act as viral sensors. In turn, these important elements are becoming the target for most viruses to evade host immune surveillance. In this review, we focus on the recent progress in the study of viral recognition and evasion.

9.
J Immunol ; 204(7): 1904-1918, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32075857

RESUMO

IFN regulatory factor 3 (IRF3) is critical for the transcription of type I IFNs in defensing virus and promoting inflammatory responses. Although several kinds of posttranslational modifications have been identified to modulate the activity of IRF3, whether atypical ubiquitination participates in the function regulation, especially the DNA binding capacity of IRF3, is unknown. In this study, we found that the ovarian tumor domain containing deubiquitinase OTUD1 deubiquitinated IRF3 and attenuated its function. An atypical ubiquitination, K6-linked ubiquitination, was essential for the DNA binding capacity of IRF3 and subsequent induction of target genes. Mechanistically, OTUD1 cleaves the viral infection-induced K6-linked ubiquitination of IRF3, resulting in the disassociation of IRF3 from the promoter region of target genes, without affecting the protein stability, dimerization, and nuclear translocation of IRF3 after a viral infection. Otud1 -/- cells as well as Otud1 -/- mice produced more type I IFNs and proinflammatory cytokines after viral infection. Otud1 -/- mice were more resistant to lethal HSV-1 and VSV infection. Consistent with the former investigations that IRF3 promoted inflammatory responses in LPS-induced sepsis, Otud1 -/- mice were more susceptible to LPS stimulation. Taken together, our findings revealed that the DNA binding capacity of IRF3 in the innate immune signaling pathway was modulated by atypical K6-linked ubiquitination and deubiquitination process, which was regulated by the deubiquitinase OTUD1.


Assuntos
Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Linhagem Celular , Células HEK293 , Herpes Simples/metabolismo , Herpesvirus Humano 1/patogenicidade , Humanos , Imunidade Inata/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/fisiologia , Estabilidade Proteica , Transdução de Sinais/fisiologia
10.
Vet Parasitol ; 275: 108931, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31605936

RESUMO

Avian coccidiosis makes a great threat and economic loss to the poultry industry, and fully understanding the innate immune response of chicken against E. tenella infection will play a significant role in avian coccidiosis prevention and treatment. Extracellular traps have been reported as a novel defense mechanism of host against pathogens infection. However, the interaction between chicken heterophil extracellular traps and E. tenella has remained not well known. Thus, this study aims to investigate the effects of E. tenella on chicken heterophil extracellular traps (ETs), and try to clarify the regulatory mechanisms in this process. E. tenella-triggered chicken heterophil ETs structures were analyzed by using scanning electron microscopy (SEM) and scanning confocal microscope. Inhibitors and Pico Green® were used to quantify E. tenella - triggered chicken heterophil ETs release. The results showed that E. tenella sporozoites significantly induced chicken heterophil ETs-like structures release, and histone and elastin co-existed with DNA in these structures of chicken heterophil ETs. Furthermore, it was also demonstrated that NADPH, p38 or Rac1 signaling pathways participated in E. tenella sporozoites-induced chicken heterophil ETs release, but more key molecules or signaling pathways involved in this process still needed to be further investigated. Taken together, this study reports that E. tenella sporozoites could induce chicken heterophil ETs formation via NADPH, p38 and Rac1 signaling pathways, which further suggests the critical role of heterophil ETs in the process of chicken against E. tenella infection.


Assuntos
Galinhas/parasitologia , Eimeria tenella/fisiologia , Armadilhas Extracelulares/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Galinhas/imunologia , Coccidiose/metabolismo , Coccidiose/veterinária , Imunofluorescência/veterinária , L-Lactato Desidrogenase/metabolismo , Masculino , Microscopia Confocal/veterinária , Microscopia Eletrônica de Varredura/veterinária , NADP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
11.
Cell Host Microbe ; 26(3): 369-384.e8, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31513772

RESUMO

Pathogen pattern recognition receptors (PRRs) trigger innate immune responses to invading pathogens. All known PRRs for viral RNA have extranuclear localization. However, for many viruses, replication generates dsRNA in the nucleus. Here, we show that the nuclear matrix protein SAFA (also known as HnRNPU) functions as a nuclear viral dsRNA sensor for both DNA and RNA viruses. Upon recognition of viral dsRNA, SAFA oligomerizes and activates the enhancers of antiviral genes, including IFNB1. Moreover, SAFA is required for the activation of super-enhancers, which direct vigorous immune gene transcription to establish the antiviral state. Myeloid-specific SAFA-deficient mice were more susceptible to lethal HSV-1 and VSV infection, with decreased type I IFNs. Thus, SAFA functions as a nuclear viral RNA sensor and trans-activator to bridge innate sensing with chromatin remodeling and potentiate robust antiviral responses.


Assuntos
Antivirais/imunologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/imunologia , Proteínas Associadas à Matriz Nuclear/imunologia , RNA Viral/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Adenosina Trifosfatases/genética , Animais , Proteínas Cromossômicas não Histona/genética , DNA Topoisomerases Tipo I/genética , Vírus de DNA , Células HEK293 , Células HeLa , Herpesvirus Humano 1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Fator Regulador 3 de Interferon , Fator Regulador 7 de Interferon , Camundongos , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Serina-Treonina Quinases , Vírus de RNA , RNA de Cadeia Dupla , Vírus
12.
J Biol Chem ; 294(45): 16494-16508, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31416833

RESUMO

Toxoplasma gondii is an important neurotropic pathogen that establishes latent infections in humans that can cause toxoplasmosis in immunocompromised individuals. It replicates inside host cells and has developed several strategies to manipulate host immune responses. However, the cytoplasmic pathogen-sensing pathway that detects T. gondii is not well-characterized. Here, we found that cyclic GMP-AMP synthase (cGAS), a sensor of foreign dsDNA, is required for activation of anti-T. gondii immune signaling in a mouse model. We also found that mice deficient in STING (Stinggt/gt mice) are much more susceptible to T. gondii infection than WT mice. Of note, the induction of inflammatory cytokines, type I IFNs, and interferon-stimulated genes in the spleen from Stinggt/gt mice was significantly impaired. Stinggt/gt mice exhibited more severe symptoms than cGAS-deficient mice after T. gondii infection. Interestingly, we found that the dense granule protein GRA15 from T. gondii is secreted into the host cell cytoplasm and then localizes to the endoplasmic reticulum, mediated by the second transmembrane motif in GRA15, which is essential for activating STING and innate immune responses. Mechanistically, GRA15 promoted STING polyubiquitination at Lys-337 and STING oligomerization in a TRAF protein-dependent manner. Accordingly, GRA15-deficient T. gondii failed to elicit robust innate immune responses compared with WT T. gondii. Consequently, GRA15-/-T. gondii was more virulent and caused higher mortality of WT mice but not Stinggt/gt mice upon infection. Together, T. gondii infection triggers cGAS/STING signaling, which is enhanced by GRA15 in a STING- and TRAF-dependent manner.


Assuntos
Imunidade Inata , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Interferon gama/metabolismo , Subunidade p35 da Interleucina-12/genética , Subunidade p35 da Interleucina-12/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genética , Multimerização Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Baço/metabolismo , Taxa de Sobrevida , Toxoplasma/patogenicidade , Toxoplasmose/mortalidade , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Ubiquitinação
13.
J Biol Chem ; 294(19): 7787-7796, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30898878

RESUMO

Platelet factor 4 (PF4) is an anti-Plasmodium component of platelets. It is expressed in megakaryocytes and released from platelets following infection with Plasmodium Innate immunity is crucial for the host anti-Plasmodium response, in which type I interferon plays an important role. Whether there is cross-talk between innate immune signaling and the production of anti-Plasmodium defense peptides is unknown. Here we demonstrate that E74, like ETS transcription factor 4 (ELF4), a type I interferon activator, can help protect the host from Plasmodium yoelii infection. Mechanically, ELF4 binds to the promoter of genes of two C-X-C chemokines, Pf4 and pro-platelet basic protein (Ppbp), initiating the transcription of these two genes, thereby enhancing PF4-mediated killing of parasites from infected erythrocytes. Elf4-/- mice are much more susceptible to Plasmodium infection than WT littermates. The expression level of Pf4 and Ppbp in megakaryocytes from Elf4-/- mice is much lower than in those from control animals, resulting in increased parasitemia. In conclusion, our study uncovered a distinct role of ELF4, an innate immune molecule, in host defense against malaria.


Assuntos
Quimiocinas CXC/imunologia , Proteínas de Ligação a DNA/imunologia , Malária/imunologia , Plasmodium yoelii/imunologia , Fator Plaquetário 4/imunologia , Fatores de Transcrição/imunologia , Transcrição Gênica/imunologia , Animais , Quimiocinas CXC/genética , Proteínas de Ligação a DNA/genética , Malária/genética , Malária/patologia , Camundongos , Camundongos Knockout , Fator Plaquetário 4/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...