Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 27(19): 2274-2288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33222665

RESUMO

At present, cancer is one of the most common diseases in the world, causing a large number of deaths and seriously affecting people's health. The traditional treatment of cancer is mainly surgery, radiotherapy or chemotherapy. Conventional chemotherapy is still an important treatment, but it has some shortcomings, such as poor cell selectivity, serious side effects, drug resistance and so on. Nanoparticle administration can improve drug stability, reduce toxicity, prolong drug release time, prolong system half-life, and bring broad prospects for tumor therapy. Lipid polymer hybrid nanoparticles (LPNs), which combine the advantages of polymer core and phospholipid shell to form a single platform, have become multi-functional drug delivery platforms. This review introduces the basic characteristics, structure and preparation methods of LPNs, and discusses targeting strategies of LPNs in tumor therapy in order to overcome the defects of traditional drug therapy.


Assuntos
Nanopartículas , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Lipídeos/uso terapêutico , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico
2.
Int Immunopharmacol ; 88: 106939, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33182039

RESUMO

Chronic inflammation and immune responses are two core element that characterize the tumor microenvironment. A large number of immune/inflammatory cells (including tumor associated macrophages, neutrophils and myeloid derived suppressor cells) as well as cytokines (such as IL-6, IL-10, TGF-ß) are present in the tumor microenvironment, which results in both a chronic inflammatory state and immunosuppression. As a consequence tumor cell migration, invasion, metastasis and anticancer drug sensitivity are modulated. On the one hand, secreted cytokines change the function of cytotoxic T lymphocytes and antigen presenting cells, thereby inhibiting tumor specific immune responses and consequently inducing a special immunosuppressive microenvironment for tumor cells. On the other hand, tumor cells change the differentiation and function of immune/inflammatory cells in the tumor microenvironment especially via the NF-κB and STAT3 signaling pathways. This may promote proliferation of tumor cells. Here we review these double edged effects of immune/inflammatory cells and cytokines on tumor cells, and explored their interactions with inflammation, hypoxia, and immune responses in the tumor microenvironment. The tumor inflammatory or immunosuppressive reactions mediated by the high activity of NF-κB or STAT3 can occur alone or simultaneously, and there is a certain connection between them. Inhibiting the NF-κB or STAT3 signaling pathway is likely to curb the growth of tumor cells, reduce the secretion of pro-inflammatory factors, and enhance the anti-tumor immune response.


Assuntos
Microambiente Tumoral/imunologia , Animais , Citocinas/imunologia , Humanos , Tolerância Imunológica , Inflamação/imunologia , Neoplasias/imunologia
3.
J Cell Commun Signal ; 12(4): 689-698, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29368299

RESUMO

Colorectal cancer is generally believed to progress through an adenoma - carcinoma sequence. Adenomatous polyposis coli (APC) mutations serve as the initiating event in adenoma formation. The ApcMin/+ mouse harbors a mutation in the APC gene, which is similar or identical to the mutation found in individuals with familial adenomatous polyposis and 70% of all sporadic CRC cases. Autophagy is a constitutive process required for proper cellular homeostasis. However, its role in intestinal adenoma formation is still controversial. Atractylenolide I (AT1) is a sesquiterpenoid that possesses various clinically relevant properties such as anti-tumor and anti-inflammatory activities. The role of AT1 on adenoma formation was tested in ApcMin/+ mice and its underlying mechanism in regulating autophagy was documented. D-dopachrome tautomerase (D-DT) was identified as a potential target of AT1 by an proteomics-based approach. The effects of p53 modification on autophgic flux was monitored in p53-/- and p53+/+ HCT116 cells. Small interfering RNA was used to investigate the function of Atg7 and D-DT on autophagy programme induce by AT1. AT1 effectively reduced the formation of adenoma and downregulated the tumorigenic proteins in ApcMin/+ mice. Importantly, AT1 stimulated autophagic flux through downregulating acetylation of p53. Activation of Sirt1 by AT1 was essential for the deacetylation of p53 and downregulation of D-DT. The lowered expression of COX-2 and ß-catenin by AT1 were partly recovered by Atg7 knockdown. AT1 activates autophagy machinery to downregulate D-DT and reduce intestinal adenoma formation. This discovery provides evidence in vivo and in vitro that inducing autophagy by natural products maybe a potential therapy to ameliorate colorectal adenoma formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...