Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(24): e2211332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36971342

RESUMO

The tumor-associated macrophages (TAMs) in intratumoral hypoxic regions are key drivers of immune escape. Reprogramming the hypoxic TAMs to antitumor phenotype holds great therapeutic benefits but remains challenging for current drugs. Here, an in situ activated nanoglycocluster is reported to realize effective tumor penetration and potent repolarization of hypoxic TAMs. Triggered by the hypoxia-upregulated matrix metalloproteinase-2 (MMP-2), the nanoglycocluster is self-assembled from the administered mannose-containing precursor glycopeptides and presents densely-arrayed mannoses to multivalently engage with mannose receptors on M2-like TAMs for efficient phenotype switch. By virtue of the high diffusivity of precursor glycopeptides due to their low molecular mass and weak affinity with TAMs in perivascular regions, the nanoglycoclusters are capable of substantially accumulating in hypoxic areas to strongly interact with local TAMs. This enables the efficient repolarization of overall TAMs with a higher rate than the small-molecule drug R848 and CD40 antibody, and beneficial therapeutic effects in mouse tumor models especially when combining with PD-1 antibody. This on-demand activated immunoagent is endowed with tumor-penetrating properties and inspires the design of diverse intelligent nanomedicines for hypoxia-related cancer immunotherapy.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Animais , Camundongos , Metaloproteinase 2 da Matriz , Macrófagos , Imunoterapia , Neoplasias/terapia , Neoplasias/patologia , Hipóxia , Glicopeptídeos/farmacologia , Microambiente Tumoral
2.
Anal Methods ; 14(48): 5034-5040, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36468235

RESUMO

Glutathione (GSH) is a polypeptide with important physiological functions. Real-time and accurate detection of GSH is of great significance for clinical diagnosis, disease treatment and pathogen detection. A fluorescent nanosensor based on composite core-shell nanoparticles for the highly selective detection of GSH is reported. In the cores, the fluorescence of rhodamine b was quenched by using gold nanoparticles (AuNPs), and GSH could competitively combine with AuNPs to cause rhodamine b to fall off, thereby recovering the fluorescence. In the shell part, molecularly imprinted materials using oxidized glutathione (GSSG) as a pseudotemplate provide GSH/GSSG specific pores and improve the specificity and anti-interference ability of the sensor. The GSH sensor has a detection range of 0-100 µM and limit of detection (LOD) of 0.18 µM, and robust sensing performance in fetal bovine serum, indicating its great potential for clinical diagnosis.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Corantes Fluorescentes , Nanopartículas Metálicas/química , Dissulfeto de Glutationa , Glutationa/química
3.
Colloids Surf B Biointerfaces ; 217: 112614, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35700564

RESUMO

Doxorubicin (DOX) is used as a first-line chemotherapeutic drug, whereas dihydroartemisinin (DHA) also shows a certain degree of antitumor activity. Disulfide bonds (-SS-) in prodrug molecules can be degraded in highly reducing environments. Thus, heterodimer prodrugs of DOX and DHA linked by a disulfide bond was designed and subsequently prepared as reduction-responsive self-assembled nanoparticles (DOX-SS-DHA NPs). In an in vitro release study, DOX-SS-DHA NPs exhibited reduction-responsive activity. Upon cellular evaluation, DOX-SS-DHA NPs were found to have better selectivity toward tumor cells and less cytotoxicity to normal cells. Compared to free DiR, DOX-SS-DHA NPs showed improved accumulation at the tumor site and even had a longer clearance half-life. More importantly, DOX-SS-DHA NPs possessed a much higher tumor inhibition efficacy than DOX-sol and MIX-sol in 4T1 tumor-bearing mice. Our results suggested the superior antitumor efficacy of DOX-SS-DHA NPs with less cytotoxicity.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Artemisininas , Linhagem Celular Tumoral , Dissulfetos/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Pró-Fármacos/química
4.
Biomaterials ; 284: 121488, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367840

RESUMO

Due to intrinsic and acquired chemo/radiotherapy-resistance, renal cell carcinoma shows limited therapeutic response to clinically utilized targeting drugs. Here a tumor-activated oncolytic peptide nanomachine is devised to selectively lysing tumor cell membrane without causing drug resistance. Specifically, in the acidic tumor microenvironment, the oncolytic peptide nanomachine automatically activated through morphologically transformation from nanoparticles to nanofibrils with restoring α-helical conformation, which physically bind to tumor cell membrane with multiple (spatially correlated and time-resolved) interactions and subsequently lyse local cell membrane. The IC50 of the oncolytic peptide nanomachine is as low as 2.44 µM and it inhibit up to 90% of tumor cells within 2 h with unique bystander killing effect. In vivo, the tumor inhibition rate of the oncolytic peptide nanomachine is 71% without off-target activity and hemolytic activity. These results support that tumor-selective oncolytic peptide nanomachine represent a promising alternative approach for multidrug-resistant tumor treatments by inducing cell membrane lysis.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Terapia Viral Oncolítica , Vírus Oncolíticos , Carcinoma de Células Renais/terapia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Renais/terapia , Masculino , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Peptídeos/química , Microambiente Tumoral
5.
Adv Mater ; 34(24): e2109432, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35426184

RESUMO

Targeted immunomodulation through biomolecule-based nanostructures, especially to dendritic cells (DCs), holds great promise for effective cancer therapy. However, construction of high-performance agonist by mimicking natural ligand to activate immune cell signaling is a great challenge so far. Here, a peptide-based nanoagonist toward CD40 (PVA-CD40) with preorganized interfacial topological structure that activates lymph node DCs efficiently and persistently, achieving amplified immune therapeutic efficacy is described. The on-site fabrication of PVA-CD40 is realized through the click conjugation of two functional peptides including the "CD40 anchoring arm" and the "assembly-driving motor." The resultant polyvalent interface rapidly triggers the receptor oligomerization and downstream signaling. Strikingly, one shot administration of PVA-CD40 elicits maturation period of DCs up to 2.3-fold comparing to that of CD40 antibody. Finally, combining the PVA-CD40 with anti-PD-1 antibody results in subsequent inhibition of tumor growth in both B16F10 and 4T1 mice tumor models with survival rate up to 37%, while none of the mice survives in the clinically relevant CD40 mAb and anti-PD-1 combination-treated group. It is envisioned that the fabrication of antibody-like superstructures in vivo provides an efficient platform for modulating the duration of immune response to achieve optimal therapeutic efficacy.


Assuntos
Células Dendríticas , Neoplasias , Animais , Antígenos CD40 , Imunoterapia/métodos , Camundongos , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia
6.
Int J Pharm ; 618: 121665, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35288223

RESUMO

Targeting delivery and prolonging action duration of artemisinin drugs are effective strategies for improving antimalarial treatment outcomes. Here, dihydroartemisinin (DHA) loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PDNs) were prepared and further cloaked with red blood cell (RBC) membranes via electrostatic interactions to yield RBC membrane-cloaked PDNs (RPDNs). The prepared RPDNs displayed a notable "core-shell" structure, with a negative surface charge of -29.2 ± 4.19 mV, a relatively uniform size distribution (86.4 ± 2.54 nm, polydispersity index of 0.179 ± 0.011), an average encapsulation efficiency (70.1 ± 0.79%), and a 24-h sustained-release behavior in vitro. Compared with PDNs, RPDNs showed markedly decreased phagocytic activity by RAW 264.7 cells and had prolonged blood circulation duration. The Pearson correlation coefficient of RPDNs distribution in infected red blood cells (iRBCs) was 0.7173, suggesting that RPDNs could effectively target Plasmodium-iRBCs. In PyBy265-infected mice, RPDNs showed a higher inhibition ratio (88.39 ± 2.69%) than PDNs (83.13 ± 2.12%) or DHA (58.74 ± 3.78%), at the same dose of 8.8 µmol/kg. The ED90 of RPDNs (8.13 ± 0.18 µmol/kg) was substantially lower than that of PDNs (14.48 ± 0.23 µmol/kg) and DHA (17.67 ± 3.38 µmol/kg). Furthermore, no apparent abnormalities were detected in routine blood examination, liver function indexes, and pathological analysis of tissue sections of PyBy265-infected mice following RPDNs treatment. In conclusion, the prepared RPDNs exhibited enhanced antimalarial efficacy, prolonged circulation, targeted delivery to Plasmodium-iRBCs, and satisfactory biocompatibility.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Nanopartículas , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas , Eritrócitos , Camundongos
7.
Microbiol Spectr ; 9(3): e0127821, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908430

RESUMO

Malaria parasites induce morphological and biochemical changes in the membranes of parasite-infected red blood cells (iRBCs) for propagation. Artemisinin combination therapies are the first-line antiplasmodials in countries of endemicity. However, the mechanism of action of artemisinin is unclear, and drug resistance decreases long-term efficacy. To understand whether artemisinin targets or interacts with iRBC membrane proteins, this study investigated the molecular changes caused by dihydroartemisinin (DHA), an artemisinin derivative, in Plasmodium falciparum 3D7 using a combined transcriptomic and membrane proteomic profiling approach. Optical microscopy and scanning electron microscopy showed that DHA can cause morphological variation in the iRBC membrane. We identified 125 differentially expressed membrane proteins, and functional analysis indicated structural molecule activity and protein export as key biological functions of the two omics studies. DHA treatment decreased the expression of var gene variants PF3D7_0415700 and PF3D7_0900100 dose-dependently. Western blotting and immunofluorescence analysis showed that DHA treatment downregulates the var gene encoding P. falciparum erythrocyte membrane protein-1 (pfEMP1). pfEMP1 knockout significantly increased artemisinin sensitivity. Results showed that pfEMP1 might be involved in the antimalarial mechanism of action of DHA and pfEMP1 or its regulated factors may be further exploited in antiparasitic drug design. The findings are beneficial for elucidating the potential effects of DHA on iRBC membrane proteins and developing new drugs targeting iRBC membrane. IMPORTANCE Malaria parasites induce morphological and biochemical changes in the membranes of parasite-infected red blood cells (iRBCs) for propagation, with artemisinin combination therapies as the first-line treatments. To understand whether artemisinin targets or interacts with iRBC membrane proteins, this study investigated the molecular changes caused by dihydroartemisinin (DHA), an artemisinin derivative, in Plasmodium falciparum 3D7 using a combined transcriptomic and membrane proteomic profiling approach. We found that DHA can cause morphological changes of iRBC membrane. Structural molecule activity and protein export are considered to be the key biological functions based on the two omics studies. pfEMP1 might be involved in the DHA mechanism of action. pfEMP1 or its regulated factors may be further exploited in antiparasitic drug design. The findings are beneficial for elucidating the potential effects of DHA on iRBC membrane proteins and developing new antimalarial drugs targeting iRBC membrane.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Membrana Celular/patologia , Eritrócitos/parasitologia , Proteínas de Membrana/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Eritrócitos/metabolismo , Eritropoetina/genética , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Microscopia Eletrônica de Varredura , Peptídeos Cíclicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteômica , Proteínas de Protozoários/biossíntese , Transcriptoma/genética
8.
Biomaterials ; 268: 120552, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33307365

RESUMO

Cancer immunotherapy, leveraging the host's coordinated immune system to fight against tumor has been clinically validated. However, the modest response owing to the multiple ways of tumor immune evasion is one of the challenges in cancer immunotherapy. Tumor associated macrophages (TAMs), as a major component of the leukocytes infiltrating in all tumors, play crucial roles in driving cancer initiation, progress and metastasis via multiple mechanisms such as mediating chronic inflammation, promoting angiogenesis, taming protective immune responses, and supporting migration and intravasation. TAMs targeted therapeutics have achieved remarkable successes in clinical trials mostly through the use of small-molecule agents and antibodies. However, efforts for further application have met with challenges of limited efficacy and safety. Nanomaterials can provide versatile approaches to realize the superior spatiotemporal control over immunomodulation to amplify immune responses, ultimately enhancing the therapeutic benefits and reducing toxicity. Here, the potential drugs used in TAM-centered cancer treatment in clinic are summarized and the recent advances of TAMs targeted nanomedicines in this filed are highlighted. More importantly, we focus on how nanomedicine can exert their advantages in spatial and temporal control of immunomodulation.


Assuntos
Nanomedicina , Neoplasias , Humanos , Imunoterapia , Macrófagos , Neoplasias/terapia , Microambiente Tumoral
9.
Colloids Surf B Biointerfaces ; 191: 111018, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32304917

RESUMO

Co-delivery of anti-tumor agents with outstanding stimulus-triggered drug release in tumor cells, especially with the aid of nanotechnology, provided the possibility to enhance delivery efficiency for targeting tumor cells and antitumor efficacy. In this paper, docetaxel-dihydroartemisinin nanoconjugates linked by disulfide bond were designed to increase co-delivery and anti-tumor efficacy. Docetaxel and dihydroartemisinin were synthesized using two-step reaction and furtherly assembled to nanoconjugates. Nanoprescription was optimized to evaluate its physicochemical properties. In vitro anti-tumor activities of nanoformulation were assessed by MTT. The flow cytometry was adopted to analyze cell apoptosis and cell cycle arrest. The wound healing assay was used to evaluate antimigratory-property. In vivo pharmacokinetic and pharmacodynamic studies were investigated in rats and 4T1 bearing Balb/c mice model after intravenous injection, respectively. The chemical structure of conjugate was confirmed. The prepared nanoparticles possessed uniform size distribution (172.10 ± 1.70 nm, PDI 0.05 ± 0.01), was stable during storage period, sustained release profiles and sensitive reduction responsiveness. MTT assay indicated that the toxicity of nanoconjugates was slightly weak. Flow cytometry studies showed that nanoconjugates could promote early apoptosis significantly and mainly arose from G0/G1 phase. The wound healing assay provided an obvious antimetastatic potential of nanoparticles in 4T1 cells. The result of pharmacokinetic study suggested that nanoconjugates exhibited higher exposure levels. In vivo pharmacodynamic research showed that mice treated with docetaxel-dihydroartemisinin nanoconjugates had lower systemic toxicity and higher survival ratio than those of control groups. This potential of nanoconjugates was developed as a novel nanoplateform to treat tumor.


Assuntos
Antineoplásicos/farmacologia , Artemisininas/farmacologia , Dissulfetos/farmacologia , Docetaxel/farmacologia , Nanopartículas/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Artemisininas/administração & dosagem , Artemisininas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/administração & dosagem , Dissulfetos/química , Docetaxel/administração & dosagem , Docetaxel/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Injeções Subcutâneas , Masculino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Células Tumorais Cultivadas
10.
Mol Pharm ; 15(9): 4161-4172, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30011369

RESUMO

A dual-sensitive nanoparticle delivery system was constructed by incorporating an acid sensitive hydrazone linker into thermosensitive nanoparticles (TSNs) for co-encapsulating doxorubicin (DOX) and interferon γ (IFNγ) and to realize the co-delivery of chemotherapy and immunotherapy agents against melanoma. DOX, a chemotherapeutic drug, was conjugated to TSNs by a pH-sensitive chemical bond, and IFNγ, a potent immune-modulator, was absorbed into TSNs through the thermosensitivity and electrostatics of nanoparticles. Consequently, the dual sensitive drug-loaded TSN delivery systems were successfully built and showed an obvious core-shell structure, good encapsulation efficiency of drugs, sustained and sensitive drug release, prolonged circulation time, as well as excellent synergistic antitumor efficiency against B16F10 tumor bearing mice. Moreover, the combinational antitumor immune responses of hydrazone bearing DOX/IFNγ-TSN (hyd) were strengthened by activating Th1-type CD4+ T cells, cytotoxic T lymphocytes, and natural killer cells, downregulating the expression levels of immunosuppressive cytokines, such as IL10 and TGFß, and upregulating the secretion of IL2 and TNFα. Taken together, the multifunctional TSNs system provides a promising strategy for multiple drugs co-delivery with distinct properties.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Interferon gama/administração & dosagem , Interferon gama/uso terapêutico , Nanopartículas/química , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Imunoterapia/métodos , Interleucina-2/metabolismo , Cinética , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
11.
J Control Release ; 269: 322-336, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29174440

RESUMO

The efficacy of immunotherapy was demonstrated to be compromised by reduced immunogenicity of tumor cells and enhanced suppressive properties of the tumor microenvironment in cancer treatment. There is growing evidence that low-dose chemotherapy can modulate the immune system to improve the anti-tumor effects of immunotherapy through multiple mechanisms, including the enhancement of tumor immunogenicity and reversal of the immunosuppressive tumor microenvironment. Here, we fabricated thermosponge nanoparticles (TSNs) for the co-delivery of chemotherapeutic drug paclitaxel (PTX) and immunostimulant interleukin-2 (IL-2) to explore the synergistic anti-tumor effects of chemotherapy and immunotherapy. The distinct temperature-responsive swelling/deswelling character facilitated the effective post-entrapment of cytokine IL-2 in nanoparticles by a facile non-solvent mild incubation method with unaffected bioactivity and favorable pharmacokinetics. PTX and IL-2 co-loaded TSNs exhibited significant inhibition on tumor growth and metastasis, and prolonged overall survival for tumor-bearing mice compared with the corresponding monotherapies. The synergistic effect was evidenced from the remodeled tumor microenvironment in which low-dose chemotherapeutics disrupted the immunosuppressive tumor microenvironment and enhanced tumor immunogenicity, and immunostimulant cytokine promoted the anti-tumor immune response of immune effector cells. The immunochemotherapy mediated by this thermosponge nanoplatform may provide a promising treatment strategy against cancer.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos/administração & dosagem , Imunoterapia , Interleucina-2/administração & dosagem , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Melanoma Experimental/terapia , Camundongos Endogâmicos C57BL , Neoplasias Cutâneas/terapia
12.
Nano Lett ; 17(10): 6366-6375, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28858519

RESUMO

A biomimetic nanogel with tumor microenvironment responsive property is developed for the combinatorial antitumor effects of chemotherapy and immunotherapy. Nanogels are formulated with hydroxypropyl-ß-cyclodextrin acrylate and two opposite charged chitosan derivatives for entrapping anticancer drug paclitaxel and precisely controlling the pH responsive capability, respectively. The nanogel supported erythrocyte membrane can achieve "nanosponge" property for delivering immunotherapeutic agent interleukin-2 without reducing the bioactivity. By responsively releasing drugs in tumor microenvironment, the nanogels significantly enhanced antitumor activity with improved drug penetration, induction of calreticulin exposure, and increased antitumor immunity. The tumor microenvironment is remodeled by the combination of these drugs in low dosage, as evidenced by the promoted infiltration of immune effector cells and reduction of immunosuppressive factors.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Quitosana/análogos & derivados , Géis/química , Interleucina-2/administração & dosagem , Neoplasias/terapia , Paclitaxel/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , 2-Hidroxipropil-beta-Ciclodextrina/química , Animais , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Imunoterapia/métodos , Interleucina-2/farmacocinética , Interleucina-2/uso terapêutico , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Paclitaxel/farmacocinética , Paclitaxel/uso terapêutico , Ratos Sprague-Dawley
13.
J Control Release ; 228: 26-37, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26921522

RESUMO

Nanoimmunotherapy, the application of nanotechnology for sustained and targeted delivery of antigens to dendritic cells (DCs), has attracted much attention in stimulating antigen-specific immune response for antitumor therapy. In order to in situ deliver antigens to DCs for efficient antigen presentation and subsequent induction of strong cytotoxic T lymphocytes (CTL) response, here we developed a multi-peptide (TRP2180-188 and HGP10025-33) and toll-like receptor 4 agonist (monophosphoryl lipid A) codelivery system based on lipid-coated zinc phosphate hybrid nanoparticles (LZnP NPs). This delivery system equips with the chelating property of zinc to realize the high encapsulation efficiency with antigenic peptides and the influence on immune system with adjuvant-like feature. The combination of H-2K(b) and H-2D(b)-restricted peptides could provide multiple epitopes as the target of specific MHC alleles, making tumor more difficult to escape from the surveillance of immune system. The formulated LZnP nano-vaccine with the size of 30nm and outer leaflet lipid exhibited antitumor immunity as the secretion of cytokines in vitro and increased CD8(+) T cell response from IFN-γ ELISPOT analysis ex vivo. The antitumor effects were further evidenced from the prophylactic, therapeutic and metastatic melanoma tumor models compared with free antigens and single peptide-loaded nano-vaccines. These results validate the benefit of LZnP-based vaccine for antitumor immunity and indicate that co-delivery of tumor antigens along with adjuvant may be an optimized strategy for tumor immunotherapy.


Assuntos
Vacinas Anticâncer/uso terapêutico , Portadores de Fármacos/química , Lipídeo A/análogos & derivados , Melanoma/terapia , Peptídeos/uso terapêutico , Fosfatos/química , Compostos de Zinco/química , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/uso terapêutico , Animais , Antígenos de Neoplasias/administração & dosagem , Antígenos de Neoplasias/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Vacinas Anticâncer/administração & dosagem , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Humanos , Imunoterapia , Lipídeo A/administração & dosagem , Lipídeo A/uso terapêutico , Melanoma/imunologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Peptídeos/administração & dosagem , Receptor 4 Toll-Like/agonistas
14.
J Mater Chem B ; 4(13): 2338-2350, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32263229

RESUMO

Developing multifunctional nanoparticles (NPs) to improve therapeutic efficacy is highly desirable in cancer therapy. In an attempt to respond to such a challenge, a novel copolymer, d-α-tocopherol polyethylene glycol succinate-SS-poly(lactide) (TPGS-SS-PLA) with a disulfide linkage between the TPGS and PLA units, was synthesized for paclitaxel (PTX) delivery. PTX-loaded NPs were fabricated using a nanoprecipitation method to form a particle size of ∼130 nm with good in vitro stability, which can be disassociated under intracellular reductive conditions to release PTX rapidly. The detached TPGS can further promote the drug retention and cytotoxicity through its P-glycoprotein inhibiting property. Integrin-specific targeting peptide, cyclic RGD (cRGD), was further conjugated to the surface of the NPs for targeting the drug delivery. The RGD-decorated NPs exhibited enhanced cellular uptake, PTX accumulation and cell cytotoxicity as compared to non-targeted NPs on murine melanoma B16F10 cells, PTX-sensitive human ovarian A2780 cells and PTX-resistant A2780/T cells. In vivo evaluation of the targeted NPs further showed an extended half-life, increased AUC (area under the concentration-time curve), and significant tumor growth inhibition in mouse sarcoma S180- and B16F10-tumor bearing mice, with reduced side effects as compared to Taxol® and non-targeted NPs. These results indicate that the RGD decorated redox-sensitive NPs could deliver chemotherapies specifically inside the cell via receptor-mediated endocytosis with enhanced efficacy, especially in integrin αvß3/αvß5-rich tumor cells. Such a targeted nanocarrier against receptor clustering prepared from a non-cytotoxic and biodegradable copolymer might have great potential in cancer treatment.

15.
Mol Pharm ; 11(11): 4118-29, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25222114

RESUMO

Nitric oxide (NO) has attracted much attention for its antitumor activity and synergistic effects when codelivered with anticancer agents. However, due to its chemical instability and short half-life, delivering gaseous NO directly to tumors is still challenging. Herein, we synthesized a NO releasing polymer, nitrate functionalized d-α-tocopheryl polyethylene glycol succinate (TNO3). TNO3 was able to self-assemble into stable micelles in physiological conditions, accumulate in tumors, and release ∼90% of NO content in cancer cells for 96 h. It further exhibited significant cancer cell cytotoxicity and apoptosis compared with nitroglycerine (GTN). Notably, TNO3 could also serve as an enhancer for the common chemotherapeutic drug doxorubicin (DOX). Codelivering TNO3 with DOX to hepatocarcinoma HepG2 cancer cells strengthened the cellular uptake of DOX and enabled the synergistic effect between NO and DOX to induce higher cytotoxicity (∼6.25-fold lower IC50). Moreover, for DOX-based chemotherapy in tumor-bearing mice, coadministration with TNO3 significantly extended the blood circulation time of DOX (14.7-fold t1/2, 6.5-fold mean residence time (MRT), and 13.7-fold area under curve (AUC)) and enhanced its tumor accumulation and penetration, thus resulting in better antitumor efficacy. In summary, this new NO donor, TNO3, may provide a simple but effective strategy to enhance the therapeutic efficacy of chemotherapeutic drugs.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Óxido Nítrico/metabolismo , Sarcoma 180/tratamento farmacológico , Vitamina E/análogos & derivados , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Portadores de Fármacos , Feminino , Meia-Vida , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Micelas , Polietilenoglicóis/química , Ratos Sprague-Dawley , Sarcoma 180/metabolismo , Sarcoma 180/patologia , Distribuição Tecidual , Vitamina E/química
16.
J Nanosci Nanotechnol ; 14(4): 3001-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24734724

RESUMO

The novel efficient architecture of photocatalyst is fabricated by incorporating graphene oxide (GO) in quantum dots (QDs) sensitized ZnO nanorods and the photocatalytic properties for methyl orange (MO) degradation are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis-NIR absorption spectroscopy. The results indicate that the incorporating of grapheme oxide is more favourable for the degradation. The improved photocatalytic properties can take several advantages given that the higher carrier mobility of GO which can reduce the recombination of carriers, and assembled quantum dots which can facilitate the absorption of solar light. The paper provides the clue to design the effective and easy recyclable photocatalyst.

17.
J Nanosci Nanotechnol ; 14(4): 3052-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24734733

RESUMO

ZnO nanoparticles doped with trivalent europium ions (Eu3+) were synthesized by the hydrothermal method. The structural properties of the samples were investigated by the X-ray diffraction (XRD). The results indicated that Eu3+ was incorporated into the lattice of ZnO. Photoluminescence (PL) measurements of ZnO:Eu3+ showed a strong red luminescence emission. Specially, the red emission can be obtained even under the nonresonant excitation of 320 nm, and it is explained by an energy transfer mechanism in which the energy is transferred from ZnO matrix to Eu3+. These results indicate that the ZnO:Eu3+ is the attractive candidate phosphor for the application in phosphor-converted light-emitting diodes (pc-LEDs) as red phosphor. The intensity of Eu3+ PL decreased with the increasing Eu3+ concentration and the concentration quenching mechanism was presented based on non-radiative recombination processes in ZnO and the energy back-transfer from the excited state of Eu3+ to the ZnO host. Moreover, the samples were synthesized under low temperature condition.

18.
J Environ Sci (China) ; 25(12): 2487-91, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24649681

RESUMO

An efficient photocatalyst was fabricated by assembling quantum dots (QDs) onto one-dimensionally-ordered ZnO nanorods, and the photocatalytic properties for Methyl Orange degradation were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV-Vis-NIR absorption spectroscopy and photoluminescence. The results indicate that the catalyst with assembled QDs is more favorable for the degradation than the pristine ZnO nanorods. The QDs with core-shell structure lower the photocatalytic ability due to the higher carrier transport barrier of the ZnS shell layer. Besides its degradation efficiency, the photocatalyst has several advantages given that the one-dimensionally-ordered ZnO nanorods have been grown directly on indium tin oxide substrates. The article provides a new method to design an effective and easily recyclable photocatalyst.


Assuntos
Nanotubos/química , Fotólise , Óxido de Zinco/química , Compostos Azo , Pontos Quânticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...