Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 102(12): 103066, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769490

RESUMO

As an important respiratory organ, the lung is susceptible to damage during heat stress due to the accelerated breathing frequency caused by an increase in environmental temperature. This can affect the growth performance of animals and endanger their health. This study aimed to explore the mechanism of lung tissue damage caused by heat stress. Broilers were randomly divided into a control group (Control) and a heat stress group (HS). The HS group was exposed to 35°C heat stress for 12 h per d from 21-days old, and samples were taken from selected broilers at 28, 35, and 42-days old. The results showed a significant increase in lactate dehydrogenase (LDH) activity in the serum and myeloperoxidase (MPO) activity in the lungs of broiler chickens across all 3 age groups after heat stress (P < 0.01), while the total antioxidant capacity (T-AOC) was significantly enhanced at 35-days old (P < 0.01). Heat stress also led to significant increases in various proinflammatory factors in serum and expression levels of HSP60 and HSP70 in lung tissue. Histopathological results showed congestion and bleeding in lung blood vessels, shedding of pulmonary epithelial cells, and a large amount of inflammatory infiltration in the lungs after heat stress. The mRNA expression of TLRs/NF-κB-related genes showed an upward trend (P < 0.05) after heat stress, while the mRNA expression of MLCK, a gene related to pulmonary blood-air barrier, significantly increased after heat stress, and the expression levels of MLC, ZO-1, and occludin decreased in contrast. This change was also confirmed by Western blotting, indicating that the pulmonary blood-air barrier is damaged after heat stress. Heat stress can cause damage to the lung tissue of broiler chickens by disrupting the integrity of the blood-air barrier and increasing permeability. This effect is further augmented by the activation of TLRs/NF-κB signaling pathways leading to an intensified inflammatory response. As heat stress duration progresses, broiler chickens develop thermotolerance, which gradually mitigates the damaging effects induced by heat stress.


Assuntos
Suplementos Nutricionais , Lesão Pulmonar , Animais , Suplementos Nutricionais/análise , NF-kappa B/genética , NF-kappa B/metabolismo , Galinhas/fisiologia , Lesão Pulmonar/veterinária , Barreira Alveolocapilar/metabolismo , Resposta ao Choque Térmico , Transdução de Sinais , RNA Mensageiro/metabolismo , Temperatura Alta
2.
Front Vet Sci ; 10: 1132536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937018

RESUMO

Introduction: Pasteurella multocida is a widespread respiratory pathogen in pigs, causing swine pneumonia and atrophic rhinitis, and the capsular serogroups A and D are the main epidemic serogroups in infected animals. This study investigated the protective effects of serogroup A and D bacterins against current circulating P. multocida strains, to better understand the immunity generated by bacterins. Method: 13 serogroup A (seven A: L3 and six A: L6 strains) and 13 serogroup D (all D: L6 strains) P. multocida strains were isolated, and used as inactivated whole cell antigen to prepare P. multocida bacterins. Mice were immunized with these bacterins at 21-day interval and intraperitoneally challenged with the homologous and heterologous P. multocida strains, respectively. The antibody titer levels and immunization protective efficacy of vaccines were evaluated. Results: All of the bacterins tested induced high titer levels of immunoglobulin G antibodies against the parental bacterial antigen in mice. Vaccination with the six A: L6 bacterins provided no protection against the parent strain, but some strains did provide heterologous protection against A: L3 strains. Vaccination with the seven A: L3 bacterins provided 50%-100% protection against the parent strain, but none gave heterologous protection against the A:L6 strains. Immunization with the thirteen D: L6 bacterins offered 60%-100% protection against the parent strain, and almost all D: L6 strains gave cross-protection. Discussion: This study found that the cross-protectivity of serogroup A strains was poor, while serogroup D strains was effective, which provided some insights for P. multocida vaccine development.

3.
Biol Trace Elem Res ; 201(1): 204-214, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35460030

RESUMO

To evaluate the molybdenum (Mo)-induced changes of intestinal morphology and the relationship of intestinal tight junction (TJ) proteins expression and intestinal barrier function, a total of 20 healthy sheep were randomly divided into five groups of four: 0, 5, 10, 20, and 50 mg/kg BW/day Na2MoO4·2H2O were administrated in five groups named control group, Mo 5 group, Mo 10 group, Mo 20 group, and Mo 50 group, respectively. After 28 days of Mo treatment, the duodenum, the jejunum, and the ileum tissue were collected. The histopathology and the developmental parameters were evaluated by hematoxylin-eosin staining. The intestinal epithelial cell DNA damage was detected by TdT-mediated dUTP nick end labeling assay. The intestinal glycoprotein and the goblet cells were analyzed by Alcian Blue-Periodic Acid-Schiff (AB-PAS) staining and PAS staining, respectively. TJ proteins were determined by immunofluorescence technology. Results showed that excessive Mo significantly decreased the small intestinal villus height (VH), crypt depth (CD), VH/CD, and mucosal thickness (P < 0.05 or P < 0.01) while induced the damage of DNA in small intestinal epithelial cells. Moreover, excessive Mo injured intestinal barrier function by decreasing the percent of glycoprotein distribution area (P < 0.05) and the relative density of intestinal goblet cells (P < 0.05). Mo treatment induced decreased (P < 0.01) expression of Zonula Occludens-1, Occludin, and Claudin-1. In conclusion, excessive Mo interfered with the expression of TJ proteins, inhibited intestinal epithelial development, and further aggravated the intestinal barrier function damage, leading to disturbing the small intestinal microenvironment balance.


Assuntos
Molibdênio , Proteínas de Junções Íntimas , Animais , Ovinos , Proteínas de Junções Íntimas/metabolismo , Disbiose/metabolismo , Disbiose/patologia , Intestinos , Intestino Delgado/metabolismo , Mucosa Intestinal/metabolismo
4.
Front Vet Sci ; 9: 922867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958306

RESUMO

In this study, we screened adjuvants for an inactivated vaccine against Erysipelothrix rhusiopathiae (E. rhusiopathiae). Inactivated cells of E. rhusiopathiae strain HG-1 were prepared as the antigen in five adjuvanted inactivated vaccines, including a mineral-oil-adjuvanted vaccine (Oli vaccine), aluminum-hydroxide-gel-adjuvanted vaccine (Alh vaccine), ISA201-biphasic-oil-emulsion-adjuvanted vaccine (ISA201 vaccine), GEL02-water-soluble-polymer-adjuvanted vaccine (GEL vaccine), and IMS1313-water-soluble-nanoparticle-adjuvanted vaccine (IMS1313 vaccine). The safety test results of subcutaneous inoculation in mice showed that Oli vaccine had the most severe side effects, with a combined score of 35, followed by the ISA201 vaccine (25 points), Alh vaccine (20 points), GEL vaccine (10 points), and IMS1313 vaccine (10 points). A dose of 1.5LD50 of strain HG-1 was used to challenge the mice intraperitoneally, 14 days after their second immunization. The protective efficacy of Oli vaccine and Alh vaccine was 100% (8/8), whereas that of the other three adjuvanted vaccines was 88% (7/8). Challenge with 2.5LD50 of strain HG-1 resulted in a 100% survival rate, demonstrating the 100% protective efficacy of the Oli vaccine, followed by the GEL vaccine (71%, 5/7), IMS1313 vaccine (57%, 4/7), ISA201 vaccine (43%, 3/7), and Alh vaccine (29%, 2/7). Challenge with 4LD50 of strain HG-1 showed 100% (7/7) protective efficacy of the Oli vaccine and 71% (5/7) protective efficacy of the GEL vaccine, whereas the protective efficacy of other three adjuvanted vaccine was 14% (1/7). The Alh and GEL vaccines were selected for comparative tests in piglets, and both caused minor side effects. A second immunization with these two adjuvanted vaccines conferred 60 and 100% protective efficacy, respectively, after the piglets were challenged via an ear vein with 8LD100 of strain HG-1. After challenge with 16LD100 of strain HG-1, the Alh and GEL vaccines showed 40% and 100% protective efficacy, respectively. Our results suggested that GEL is the optimal adjuvant for an inactivated vaccine against E. rhusiopathiae.

5.
Vaccines (Basel) ; 9(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34696263

RESUMO

Capsular type A and D strains of Pasteurella multocida are the main epidemic serogroups in pigs in China. In this study, we preliminarily evaluated the immune protective efficacy of the two traditional vaccines, an inactivated C44-1 aluminum-hydroxide-gel-adjuvanted (Alh-C44-1) vaccine and a live EO630 vaccine, against currently circulating strains of P. multocida in a mouse model. Mice immunized twice with conventional vaccines generated higher antibody titers, and significantly higher levels of IgG were observed in the mice inoculated with the inactivated Alh-C44-1 vaccine on day 35 (p < 0.05) than those with the live EO630 vaccine. The mice immune protection test showed that the vaccination groups had a 57% or 71% protection effect against the serogroup B strain, but had no protective effect against epidemic strains. In conclusion, our study found that the widely used traditional P. multocida vaccines in China provide good protection against homologous strains, but could not provide cross-protection against heterologous strains in a mouse model.

6.
Genet Test Mol Biomarkers ; 18(3): 196-201, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24387690

RESUMO

P-glycoprotein (P-gp) is present in various tissue cells, required for the pumping of lipophilic drugs (including glucocorticoids) out of cells. We hypothesized that polymorphisms in the P-gp encoding gene (multidrug-resistant transporter-1 [MDR1]) are related to individual differences in glucocorticoid sensitivity and the development of glucocorticoid-induced avascular necrosis of the femoral head (GANFH). In this case-control study, we genotyped three known single-nucleotide polymorphisms (SNPs: C1236T, G2677T/A, and C3435T) within the MDR1 gene in 662 Chinese subjects. Statistically significant differences between GANFH patients and either healthy controls or glucocorticoid-resistant patients (non-GANFH) were found for the T allele or TT genotype of C3435T. The haplotype TTT, composed of these three SNPs, exhibited a significant association with the disease. No associations were identified between C1236T or G2677T/A and GANFH. Our results suggest that the C3435T polymorphism of the MDR1 gene is associated with susceptibility to GANFH in a Chinese population.


Assuntos
Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/genética , Glucocorticoides/efeitos adversos , Polimorfismo de Nucleotídeo Único , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Povo Asiático/genética , Povo Asiático/estatística & dados numéricos , Estudos de Casos e Controles , Feminino , Necrose da Cabeça do Fêmur/epidemiologia , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...