Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36986139

RESUMO

Night-shift work and sleep disorders are associated with type 2 diabetes (T2DM), and circadian rhythm disruption is intrinsically involved. Studies have identified several signaling pathways that separately link two melatonin receptors (MT1 and MT2) to insulin secretion and T2DM occurrence, but a comprehensive explanation of the molecular mechanism to elucidate the association between these receptors to T2DM, reasonably and precisely, has been lacking. This review thoroughly explicates the signaling system, which consists of four important pathways, linking melatonin receptors MT1 or MT2 to insulin secretion. Then, the association of the circadian rhythm with MTNR1B transcription is extensively expounded. Finally, a concrete molecular and evolutionary mechanism underlying the macroscopic association between the circadian rhythm and T2DM is established. This review provides new insights into the pathology, treatment, and prevention of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Melatonina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Melatonina/metabolismo , Ritmo Circadiano , Secreção de Insulina
2.
Ann Med ; 55(1): 1262-1286, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36974476

RESUMO

Disturbed circadian rhythms have been a risk factor for type 2 diabetes mellitus (T2DM). Melatonin is the major chronobiotic hormone regulating both circadian rhythm and glucose homeostasis. The rs10830963 (G allele) of the melatonin receptor 1B (MTNR1B) gene has the strongest genetic associations with T2DM according to several genome-wide association studies. The MTNR1B rs10830963 G allele is also associated with disturbed circadian phenotypes and altered melatonin secretion, both factors that can elevate the risk of diabetes. Furthermore, evolutionary studies implied the presence of selection pressure and ethnic diversity in MTNR1B, which was consistent with the "thrifty gene" hypothesis in T2DM. The rs10830963 G risk allele is associated with delayed melatonin secretion onset in dim-light and prolonged duration of peak melatonin. This delayed melatonin secretion may help human ancestors adapt to famine or food shortages during long nights and early mornings and avoid nocturnal hypoglycemia but confers susceptibility to T2DM due to adequate energy intake in modern society. We provide new insight into the role of MTNR1B variants in T2DM via disturbed circadian rhythms from the perspective of the "thrifty gene" hypothesis; these data indicate a novel target for the prevention and treatment of susceptible populations with the thrifty genotype.


Assuntos
Ritmo Circadiano , Diabetes Mellitus Tipo 2 , Melatonina , Receptor MT2 de Melatonina , Humanos , Glicemia/genética , Ritmo Circadiano/genética , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Receptor MT2 de Melatonina/genética
3.
Diab Vasc Dis Res ; 19(4): 14791641221122918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35989592

RESUMO

OBJECTIVES: We aimed to explore the shared and specific signalling pathways involved in diabetic retinopathy (DR), diabetic peripheral neuropathy (DPN) and diabetic nephropathy (DN). METHODS: Differentially expressed mRNAs and lncRNAs were identified by high-throughput sequencing. Subsequently, functional enrichment analysis, protein-protein interaction (PPI) analysis and lncRNAs-mRNAs networks were conducted to determine the pathogenic mechanisms underlying DR, DPN and DN. RESULTS: Twenty-six biological pathways were shared among DR, DPN and DN groups compared to the type 2 diabetes mellitus (T2DM) group without complications, and most of the shared pathways and core proteins were involved in immune and inflammatory responses of microvascular damage. Cytokine‒cytokine receptor interactions and chemokine signalling pathway were the most significant and specific pathways for DR, and the lncRNA‒mRNA regulatory networks affected DR by targeting these pathways. Sphingolipid metabolism and neuroactive ligand-receptor pathways were found to be specific for the pathogenesis of DPN. Moreover, multiple amino acid metabolic pathways were involved in the occurrence and progression of DN. CONCLUSIONS: Diabetic retinopathy, DPN and DN exhibited commonality and heterogeneity simultaneously. The shared pathologic mechanisms underlying these diabetic complications are involved in diabetic microvascular damage via immune and inflammatory pathways. Our findings predict several biomarkers and therapeutic targets for these diabetic complications.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Neuropatias Diabéticas , Retinopatia Diabética , RNA Longo não Codificante , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Retinopatia Diabética/patologia , Sequenciamento de Nucleotídeos em Larga Escala , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Front Endocrinol (Lausanne) ; 12: 774608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046894

RESUMO

Objective: Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy, and its pathogenesis is still unclear. Studies have shown that circular RNAs (circRNAs) can regulate blood glucose levels by targeting mRNAs, but the role of circRNAs in GDM is still unknown. Therefore, a joint microarray analysis of circRNAs and their target mRNAs in GDM patients and healthy pregnant women was carried out. Methods: In this study, microarray analyses of mRNA and circRNA in 6 GDM patients and 6 healthy controls were conducted to identify the differentially expressed mRNA and circRNA in GDM patients, and some of the discovered mRNAs and circRNAs were further validated in additional 56 samples by quantitative realtime PCR (qRT-PCR) and droplet digital PCR (ddPCR). Results: Gene ontology and pathway analyses showed that the differentially expressed genes were significantly enriched in T cell immune-related pathways. Cross matching of the differentially expressed mRNAs and circRNAs in the top 10 KEGG pathways identified 4 genes (CBLB, ITPR3, NFKBIA, and ICAM1) and 4 corresponding circRNAs (circ-CBLB, circ-ITPR3, circ-NFKBIA, and circ-ICAM1), and these candidates were subsequently verified in larger samples. These differentially expressed circRNAs and their linear transcript mRNAs were all related to the T cell receptor signaling pathway, and PCR results confirmed the initial microarray results. Moreover, circRNA/miRNA/mRNA interactions and circRNA-binding proteins were predicted, and circ-CBLB, circ-ITPR3, and circ-ICAM1 may serve as GDM-related miRNA sponges and regulate the expression of CBLB, ITPR3, NFKBIA, and ICAM1 in cellular immune pathways. Conclusion: Upregulation of T cell receptor signaling pathway components may represent the major pathological mechanism underlying GDM, thus providing a potential approach for the prevention and treatment of GDM.


Assuntos
Diabetes Gestacional/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Feminino , Ontologia Genética , Humanos , Análise em Microsséries , Gravidez , RNA Circular/metabolismo , RNA Mensageiro/metabolismo , Regulação para Cima
5.
Space Med Med Eng (Beijing) ; 18(2): 121-5, 2005 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-15977391

RESUMO

OBJECTIVE: To study the rule of mutation of Streptomyces fradiae during spaceflight, and to select efficient tylosin producing strains for industrial production. METHOD: Streptomyces fradiae 9940S(+)-86 were carried on-board spaceship "Shenzhou" I, "Shenzhou" III and "Shenzhou" IV sequentially to achieve spaceflight mutation breeding experiment. RESULT: After space experiments and the screening tests in the lab, 48 strains were obtained which promoted production by +20% or more at shaker level. And the highest production of a strain was 14950 micrograms/ml, which means an increase of 91.5%. CONCLUSION: Comparing the results of three tests, it is found that the outer space environment can lead to a cumulative mutation. After the medium scale tests and production experiments, strain T1-156-84-23 was finally selected to be used for sample production. And its output was increased by 18%.


Assuntos
Voo Espacial , Streptomyces/genética , Tilosina/biossíntese , Ausência de Peso , Mutação , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...