Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Water Res ; 255: 121503, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537488

RESUMO

With the increasing adoption of carbon-based strategies to enhance methanogenic processes, there is a growing concern regarding the correlation between biochar properties and its stimulating effects on anaerobic digestion (AD) under ammonia inhibition. This study delves into the relevant characteristics and potential mechanisms of biochar in the context of AD system under ammonia inhibition. The introduction of optimized biochar, distinguished by rich CO bond, abundant defect density, and high electronic capacity, resulted in a significant reduction in the lag period of anaerobic digestion system under 5.0 g/L ammonia stress, approximately by around 63 % compared to the control one. Biochar helps regulate the community structure, promotes the accumulation of acetate-consuming bacteria, in the AD system under ammonia inhibition. More examinations show that biochar promotes direct interspecies electron transfer in AD system under ammonia inhibition, as evidenced by diminished levels of bound electroactive extracellular polymeric substances, increased abundance of electroactive bacteria, and notably, the up-regulation of direct interspecies electron transfer associated genes, including the conductive pili and Cytochrome C genes, as revealed by meta-transcriptomic analysis. Additionally, gene expression related to proteins associated with ammonium detoxification were found to be up-regulated in systems supplemented with biochar. These findings provide essential evidence and insights for the selection and potential engineering of effective biochar to enhance AD performance under ammonia inhibition.

2.
Huan Jing Ke Xue ; 45(1): 1-7, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216453

RESUMO

Based on the observation data of the daily maximum 8-hour ozone (O3) average concentration[MDA8-O3, ρ(O3-8h)] and meteorological reanalysis data in the Pearl River Delta Region from 2015 to 2022, four machine learning methods, i.e., support vector machine regression (SVR), random forest (RF), multi-layer perceptron (MLP), and lightweight gradient boosting machine (LG) were used to establish MDA8-O3 prediction models. The results showed that the SVR model had the best prediction performance on MDA8-O3 during the whole year, the coefficient of determination (R2) reached 0.86, and the root mean square error (RMSE) and mean absolute error (MAE) were 16.3 µg·m-3 and 12.3 µg·m-3, respectively. The prediction performance of the SVR model in autumn was still slightly better than that of LG and MLP, with R2,RMSE,and MAE values of 0.88, 19.8 µg·m-3,and 16.1 µg·m-3, respectively. The RF model performed the worst in the autumn prediction. In addition, the models trained by data from the whole year had better prediction ability on autumn MDA8-O3 than that of those only trained by autumn data, and the R2 differed 0.08-0.14.

4.
J Oncol ; 2023: 2339732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644234

RESUMO

Background: Ubiquilin 2 (UBQLN2) is an adaptor of ubiquitinated proteins and the proteasome. The potential role of UBQLN2 in carcinogenesis has been demonstrated. However, its role in modulating the radiosensitivity of cancer is not clear. Here, we explored the radiosensitizing effect of silencing UBQLN2 on esophageal squamous cell carcinoma (ESCC) and its mechanisms. Methods: We analyzed the prognostic role of UBQLN2 in the ESCC patient cohort from the Cancer Genomic Atlas (TCGA) database and our hospital. We also conducted a series of experiments in vivo and in vitro to investigate the effect of silencing UBQLN2 on ESCC radiosensitivity and its mechanisms. Results: UBQLN2 is highly expressed in ESCC tissues and positively correlated with poor overall survival (OS). The knockdown of UBQLN2 dramatically increased the radiosensitivity of ESCC cells. Mechanically, UBQLN2 suppression substantially upregulated p38 mitogen-activated protein kinases (MAPK). The p38 MAPK inhibitor SB203580 could reverse the radiation-enhancing effect induced by UBQLN2 knockdown. The direct interaction between UBQLN2 and p38 MAPK was confirmed by co-immunoprecipitation (CO-IP) assay. Furthermore, silencing UBQLN2 also inhibited the expression of phosphorylated DNA-dependent protein kinase catalytic subunit (p-DNA-PKcs) after irradiation. Finally, the xenografted tumor experiment confirmed the radiosensitizing effect of silencing UBQLN2 on ESCC in vivo. Conclusion: Our results suggest that silencing UBQLN2 enhances the radiosensitivity of ESCC by activating p38 MAPK, and UBQLN2 may be a potential target to enhance the radiosensitivity of ESCC.

5.
ACS Nano ; 16(11): 18157-18167, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36240045

RESUMO

Biocompatible adhesive films are important for many applications (e.g., wearable devices, implantable devices, and attachable sensors). In particular, achieving self-adhesion on one side of a film with biocompatible materials is a compelling goal in adhesion science. Herein, we report a simple and easy manufacturing process using water-soluble hyaluronic acid (HA) that allows adhesiveness on only one side using binary polymer mixtures based on a phase-separation strategy with an elastomer. HA influx allows for the entangled polymer chains of the elastomer to spontaneously deform, permitting tunable mechanical elasticity, conformability, and adhesion. The proposed adhesive film enables the transfer of nanopatterning and the attachment of various surfaces without the use of additional chemicals. In addition, the film can be used for measuring epidermal biopotential and for skin fixation of drug devices. Therefore, the developed facile asymmetric adhesion can block the interferences of other materials on the unnecessary adhesion side, providing considerable potential for the development of functional, multifunctional, and smart bioadhesives.


Assuntos
Adesivos , Polímeros , Cimentos de Resina , Eletrônica , Elastômeros
6.
J Therm Biol ; 108: 103303, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36031224

RESUMO

The thermoneutral zone (TNZ), one of the most well-recognized concepts of thermal physiology of homeothermic organisms, is observed to differ between animal species, and may be associated with energy expenditure. However, the characteristics of the TNZ of lactating females, the stage of life history with typically the highest energy demands, remain unclear. In this study, we examined body mass, metabolic rate, TNZ and body composition, and milk energy output, in striped hamsters (Cricetulus barabensis, mean body mass: 29.1 ± 4.4g ranging from 20.0 to 36.6g) at peak lactation, and in hamsters raising small, medium, and large litter sizes throughout lactation. There was a significant downward shift in the lower critical temperature (LCT) of the TNZ in lactating hamsters (TNZ = 22.5-35 °C), resulting in a wider TNZ compared to non-reproductive females (TNZ = 27.5-32.5 °C). At peak lactation, hamsters raising large litter sizes had a considerably lower LCT and a wider TNZ compared to hamsters raising medium and small sized litters, whose upper critical temperature of the TNZ remain fixed. Compared to virgin hamsters, hamsters at peak lactation consumed 2.5 times more food, and had significantly higher energy expenditure corresponding to a significantly higher resting metabolic rate and milk output to meet the requirements of their offspring, which increased with litter size. The organs with the highest oxygen consumption rates, such as the liver, kidneys, and digestive tracts, were considerably heavier in lactating hamsters, particular in those raising large litter sizes, compared to virgin hamsters. The data show that the increased energy expenditure during lactation induces a substantial downward shift of the LCT, consequently resulting in a wider TNZ. The morphological plasticity of organs with high energy requirements is likely involved in this TNZ shift.


Assuntos
Metabolismo Energético , Lactação , Animais , Metabolismo Basal , Cricetinae , Cricetulus , Feminino , Tamanho da Ninhada de Vivíparos , Gravidez
7.
Physiol Behav ; 254: 113897, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35788009

RESUMO

Food resource availability is one of the most important factors affecting interindividual competition in a variety of animal species. However, the energy budget and territory aggression strategy of small mammals during periods of food restriction remain uncertain. In this study, metabolic rate, body temperature, territory aggression behavior, and fat deposit were measured in male striped hamster (Cricetulus barabensis) restricted by 20% of ad libitum food intake with or without supplementary methimazole. Serum thyroid hormone (tri-iodothyronine, T3 and thyroxine, T4), and cytochrome c oxidase (COX) activity in liver, brown adipose tissue, and skeletal muscle, were also measured. Attack latency, total attack times and duration, and the interval duration between attacks of resident hamsters were not significantly changed during food restriction, which was not significantly affected by supplementary methimazole. Metabolic rate and body temperature was significantly increased in food-restricted hamsters following introduction of an intruder, which was not completely blocked by supplementary methimazole. Serum T3 and T4 levels and BAT COX activity were not significantly changed following aggression, and were significantly decreased by supplementary methimazole. These findings suggest that striped hamsters increase energy expenditure for territory aggression during food restriction, and consequently lead to excessive energy depletion. Territory aggression behavior may decrease the capacity to cope with food shortage, which may be independent of thyroid hormone.


Assuntos
Tecido Adiposo Marrom , Metimazol , Tecido Adiposo Marrom/fisiologia , Agressão , Animais , Cricetinae , Cricetulus , Metabolismo Energético/fisiologia , Masculino , Metimazol/metabolismo , Hormônios Tireóideos
8.
Am J Transl Res ; 14(3): 1616-1627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422963

RESUMO

OBJECTIVE: To investigate the radiosensitizing effect of cyclin D-cyclin dependent kinase (CDK) 4/6 inhibitor palbociclib on esophageal squamous cell carcinoma (ESCC) and its underlying mechanisms. METHODS: The effect of palbociclib on ESCC cell radiosensitivity was detected by cell counting kit-8 (CCK-8) and clonogenic assay. γH2AX immunofluorescent staining was used to assess the repair of DNA damage induced by radiation. The expression of DNA repair proteins were examined by western blotting. Subsequently, immunoblotting and autophagy inhibitors were used to evaluate the underlying mechanisms of palbociclib triggered radiosensitization. Finally, the xenografts of ESCC were established to study the radiosensitizing effect of palbociclib in vivo. RESULTS: Palbociclib combined with irradiation significantly inhibited the cell viability of ESCC in vitro. The expression level of γH2AX showed that radiation induced DNA damage repair was inhibited by palbociclib treatment. Palbociclib also suppressed the expression of RAD51 and phosphorylated DNA-dependent protein kinase catalytic subunit (p-DNA-PKcs) after irradiation. Mechanically, palbociclib enhanced the radiosensitization of ESCC by activating autophagy via suppression of mammalian target of rapamycin (mTOR). Inhibition of autophagy using chloroquine could partially reverse the radiation enhancing effect of palbociclib. Lastly, the xenografted tumor experiment confirmed the radiosensitizing effect of palbociclib in ESCC in vivo. CONCLUSION: Our results showed that palbociclib improved the radiosensitivity of ESCC in vivo and in vitro, and thus it may be a promising radiosensitization agent for the treatment of ESCC.

9.
Oxid Med Cell Longev ; 2022: 6179444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251479

RESUMO

Oxidative stress and apoptosis play important roles in the pathogenesis of various degenerative diseases. Previous studies have shown that naringin can exert therapeutic effects in multiple degenerative diseases by resisting oxidative stress and inhibiting apoptosis. Although naringin is effective in treating degenerative disc disease, the underlying mechanism remains unclear. This study is aimed at investigating the effects of naringin on oxidative stress, apoptosis, and intervertebral disc degeneration (IVDD) induced by cyclic stretch and the underlying mechanisms in vitro and in vivo. Abnormal cyclic stretch was applied to rat annulus fibrosus cells, which were then treated with naringin, to observe the effects of naringin on apoptosis, oxidative stress, mitochondrial function, and the nuclear factor- (NF-) κB signaling pathway. Subsequently, a rat model of IVDD induced by dynamic and static imbalance was established to evaluate the effects of naringin on the degree of degeneration (using imaging and histology), apoptosis, and oxidative stress in the serum and the intervertebral disc. Naringin inhibited the cyclic stretch-induced apoptosis of annulus fibrosus cells, reduced oxidative stress, improved mitochondrial function, enhanced the antioxidant capacity, and suppressed the activation of the NF-κB signaling pathway. Additionally, it reduced the degree of IVDD (evaluated using magnetic resonance imaging) and the level of oxidative stress and inhibited apoptosis and p-P65 expression in the intervertebral discs of rats. Thus, naringin can inhibit cyclic stretch-induced apoptosis and delay IVDD, and the underlying mechanism may be related to the inhibition of oxidative stress and activation of the NF-κB signaling pathway. Naringin may be an effective drug for treating degenerative disc disease.


Assuntos
Anel Fibroso/citologia , Anel Fibroso/metabolismo , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Flavanonas/administração & dosagem , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , NF-kappa B/metabolismo , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anel Fibroso/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Mitocôndrias/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
10.
Environ Res ; 211: 113006, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35227674

RESUMO

Microbial electrolysis cell (MEC) coupled anaerobic digestion (AD), named as MEC-AD system, can effectively promote methane production under ammonia inhibition, but the inherent mechanism is still poorly understood. This study comprehensively explored the MEC-AD performance and mechanism under high-concentration ammonia stress including using proteomic analysis. It was found that the methane generation rates in MEC-AD systems were 2.0-2.7 times that of AD ones under 5.0 g/L ammonia stress. Additionally, the experimental conditions for methane generation in MEC-AD systems were optimized using response surface methodology. Further analysis indicates that the activities of acetate kinase and F420 were improved, and particularly the direct interspecies electron transfer (DIET) was promoted in MEC-AD systems, as indicated by increased electroactive extracellular polymeric substance, decreased charge transfer resistance, and enrichment of electroactive microbes such as Geobacter on the bioelectrodes. Moreover, proteomic analysis reveals that the DIET associated proteins such as Cytochrome C was up-regulated, and ammonia transfer-related proteins were down-regulated and ammonium detoxification-related proteins were up-regulated in MEC-AD systems. This work provides us a better understanding on the MEC-AD performance especially for the treatment of wastewater containing high-concentration ammonia.


Assuntos
Amônia , Reatores Biológicos , Anaerobiose , Estimulação Elétrica , Matriz Extracelular de Substâncias Poliméricas , Metano , Proteômica
11.
Parasitol Res ; 121(2): 743-750, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34988670

RESUMO

Undercooked or raw meat containing cyst-stage bradyzoites and oocyst-contaminated pets are presumed to constitute a major source of human toxoplasmosis. As the geospatial epidemiology of Toxoplasma gondii (T. gondii) infection in livestock, pets, and humans is rarely studied in China, we undertook a geospatial analysis using GIS visualization techniques. The present study retrieved information from the PubMed, China National Knowledge Infrastructure, and Baidu Scholar databases from 1984 up to 2020. All the data about the seroprevalence of T. gondii in livestock (sheep and goats, pigs, cattle and yaks), pets (cats, dogs), and humans in China were collected. Geospatial epidemiology of T. gondii infection in these hosts was performed using GIS. Results revealed that the estimated pooled seroprevalence of T. gondii was ranged from 3.98 to 43.02% in sheep and goats in China, 0.75 to 30.34% in cattle and yaks, 10.45 to 66.47% in pigs, 2.50 to 60.00% in cats, 0.56 to 27.65% in dogs, and 0.72 to 23.41% in humans. The higher seroprevalences of T. gondii were observed in sheep and goats in the districts of Chongqing, Zhejiang, and Beijing. The infection rates of T. gondii in cattle and yaks were higher in Guizhou, Zhejiang, and Chongqing. Also, the pigs from Chongqing and Guizhou were most severely infected with T. gondii. For cats, the districts of Shanxi, Hebei, and Yunnan had higher seroprevalences of T. gondii and, the infections among dogs were higher in Yunnan and Hebei as well. Furthermore, higher infection pressure of T. gondii exists in the districts of Taiwan and Tibet in humans. The geographical and spatial distribution of toxoplasmosis indicated that infection with T. gondii was widely spread in China, with a wide range of variations among the different hosts and regions in the country. Our results suggested that livestock and pets are not only a reservoir for the parasite but also a direct source of T. gondii infection for humans. It is important to control T. gondii infections in these animals that would reduce the risk of toxoplasmosis in humans.


Assuntos
Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Animais , Anticorpos Antiprotozoários , Gatos , Bovinos , China/epidemiologia , Cães , Humanos , Gado , Animais de Estimação , Estudos Soroepidemiológicos , Ovinos , Suínos , Toxoplasmose Animal/epidemiologia
12.
Nanoscale ; 14(4): 1136-1143, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34989389

RESUMO

Suspended nanostructures play an important role in enhancing the performance of a diverse group of nanodevices. However, realizing a good arrangement and suspension for nanostructures of various shapes remains a significant challenge. Herein, a rapid and simple method for fabricating wafer-scale, highly uniform, well-arrayed suspended nanostructures via nanowelding lithography is reported. Suspended nanostructures with various shapes (nanowires, nanoholes, nanomesh, and nanofilms) and materials (gold, silver, and palladium metals) were employed to demonstrate the applicability of our method. Moreover, gas sensors and thermoacoustic speakers with suspended nanowires outperformed those with unsuspended nanostructures. The proposed method is expected to help advance the development of future nanodevices based on suspended nanostructures.

13.
ACS Nano ; 16(1): 378-385, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34978803

RESUMO

Nanotransfer printing techniques have attracted significant attention due to their outstanding simplicity, cost-effectiveness, and high throughput. However, conventional methods via a chemical medium hamper the efficient fabrication with large-area uniformity and rapid development of electronic and photonic devices. Herein, we report a direct chemisorption-assisted nanotransfer printing technique based on the nanoscale lower melting effect, which is an enabling technology for two- or three-dimensional nanostructures with feature sizes ranging from tens of nanometers up to a 6 in. wafer-scale. The method solves the major bottleneck (large-scale uniform metal catalysts with nanopatterns) encountered by metal-assisted chemical etching. It also achieves wafer-scale, uniform, and controllable nanostructures with extremely high aspect ratios. We further demonstrate excellent uniformity and high performance of the resultant devices by fabricating 100 photodetectors on a 6 in. Si wafer. Therefore, our method can create a viable route for next-generation, wafer-scale, uniformly ordered, and controllable nanofabrication, leading to significant advances in various applications, such as energy harvesting, quantum, electronic, and photonic devices.

14.
BMC Zool ; 7(1): 19, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37170304

RESUMO

BACKGROUND: In mammals, body mass lost during food restriction is often rapidly regained, and fat is accumulated when ad libitum feeding is resumed. Studies in small cold-acclimated mammals have demonstrated significant mobilization of fat deposits during cold exposure to meet the energy requirements of metabolic thermogenesis. However, no studies to our knowledge have examined the effect of cold exposure on fat accumulation during body mass recovery when refed ad libitum. In this study, striped hamsters restricted to 80% of their regular food intake were then refed ad libitum and exposed to one of three conditions: Intermittent cold temperature (5 °C) for 2 h per day (ICE-2 h/d), intermittent cold temperature (5 °C) for 12 h per day (ICE-12 h/d), or persistent cold exposure (PCE) for four weeks. We measured energy intake, fat deposit mass, serum thyroid hormone levels, and uncoupling protein 1 expression in brown adipose tissue. RESULTS: There was no significant effect of intermittent or persistent cold exposure on body mass regain, whereas energy intake increased significantly and total fat deposit decreased in the ICE-12 h/d and PCE groups compared to the ICE-2 h/d group and control group maintained at 23 °C (CON). In the ICE-12 h/d and PCE groups, hamsters had 39.6 and 38.3% higher serum 3,3',5-triiodothyronine levels, respectively, and 81.6 and 71.3% up-regulated expression of uncoupling protein 1, respectively, in brown adipose tissue compared to their counterparts in the CON group. The rate of mitochondrial state III and state IV respiration O2 consumption and the activity of cytochrome c oxidase in BAT and liver were significantly higher in the ICE-12 h/d and PCE groups than in the ICE-2 h/d and CON groups. CONCLUSIONS: Our findings suggest thyroid hormone-mediated heat production in brown adipose tissue and liver may be involved in preventing fat accumulation during refeeding in animals frequently or persistently exposed to cold conditions.

15.
ACS Appl Mater Interfaces ; 13(48): 58220-58228, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34793117

RESUMO

Patch-type drug delivery has garnered increased attention as an attractive alternative to the existing drug delivery techniques. Thus far, needle phobia and efficient drug delivery remain huge challenges. To address the issue of needle phobia and enhance drug delivery, we developed a needle-free and self-adhesive microcup patch that can be loaded with an ultrathin salmon DNA (SDNA) drug carrier film. This physically integrated system can facilitate efficient skin penetration of drugs loaded into the microcup patch. The system consists of three main components, namely, a cup that acts as a drug reservoir, an adhesive system that attaches the patch to the skin, and physical stimulants that can be used to increase the efficiency of drug delivery. In addition, an ultrathin SDNA/drug film allows the retention of the drug in the cup and its efficient release by dissolution in the presence of moisture. This latter feature has been validated using gelatin as a skin mimic. The cup design itself has been validated by comparing its deformation and displacement with those of a cylindrical structure. Integration of the self-adhesive microcup patch with both ultrasonic waves and an electric current allows the model drug to penetrate the stratum corneum of the skin barrier and the whole epidermis, thereby enhancing transdermal drug delivery and reducing skin irritation. This system can be used as a wearable biomedical device for efficient transdermal and needle-free drug delivery.


Assuntos
Materiais Biocompatíveis/química , DNA/química , Sistemas de Liberação de Medicamentos , Pele/química , Adesivos , Administração Cutânea , Animais , Materiais Biocompatíveis/administração & dosagem , DNA/administração & dosagem , Portadores de Fármacos/química , Teste de Materiais , Agulhas , Salmão
16.
Sci Adv ; 7(42): eabj0694, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34644113

RESUMO

Recently, three-dimensional electronics (3DE) is attracting huge interest owing to the increasing demands for seamless integration of electronic systems on 3D curvilinear surfaces. However, it is still challenging to fabricate 3DE with high customizability, conformability, and stretchability. Here, we present a fabrication method of 3DE based on predistorted pattern generation and thermoforming. Through this method, custom-designed 3DE is fabricated through the thermoforming process. The fabricated 3DE has high 3D conformability because the thermoforming process enables the complete replication of both the overall shape and the surface texture of the 3D mold. Furthermore, the usage of thermoplastic elastomer and a liquid metal­based conductive electrode allows for high thermoformability during the device fabrication as well as high stretchability during the device operation. We believe that this technology can enable a wide range of new functionalities and multiscale 3D morphologies in wearable electronics.

17.
Front Oncol ; 11: 698113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490093

RESUMO

OBJECTIVE: Nasopharyngeal carcinoma (NPC) is a common malignant tumour in Southeast Asia, especially in southern China. ABO blood groups have been proven to play an important role in many cancers. However, it is still controversial whether the ABO blood group has a definite relationship to susceptibility to NPC and the prognosis of NPC patients. This meta-analysis was performed to elucidate the correlation between ABO blood group and NPC to provide more data for clinical practice. METHODS: A systematic search was performed of the Chinese National Knowledge Infrastructure (CNKI), Wanfang, Web of Science, EMBASE, and PubMed databases up to December 31, 2020. Stata 11.0 statistical software was used for this meta-analysis. RESULTS: According to the inclusion and exclusion criteria, a total of 6 studies including 6938 patients with NPC were selected. Blood group O was relevant to Chinese NPC patients, and patients with blood group O had a significantly lower incidence of NPC, while blood group A had no correlation with susceptibility to NPC. There was no difference in the 3-year overall survival (OS), locoregional relapse-free survival (LRRFS) or distant metastasis-free survival (DMFS) rates between patients with blood group O and those with non-O blood groups; worse 5-year OS, LRRFS and DMFS rates were found in patients with blood group O, whereas blood group A was not related to prognosis. CONCLUSION: Blood group O in Chinese patients with NPC seems to be a protective factor for morbidity. However, once patients with blood group O are diagnosed with NPC, this blood group often indicates unfavourable OS, LRRFS and DMFS rates. It is recommended that more attention should be paid to the influence of blood group factor on patients in the treatment of NPC.

18.
ACS Appl Mater Interfaces ; 13(29): 35069-35078, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34282875

RESUMO

Many conventional micropatterning and nanopatterning techniques employ toxic chemicals, rendering them nonbiocompatible and unsuited for biodevice production. Herein the formation of water bridges on the surface of hyaluronic acid (HA) films is exploited to develop a transfer-based nanopatterning method applicable to diverse structures and materials. The HA film surface, made deformable via water bridge generation, is brought into contact with a functional material and subjected to thermal treatment, which results in film shrinkage, allowing a robust pattern transfer. The proposed biocompatible method, which avoids the use of extra chemicals, enables the transfer of nanoscale, microscale, and thin-film structures as well as functional materials such as metals and metal oxides. A nanopatterned HA film is transferred onto a moisture-containing contact lens to fabricate smart contact lenses with unique optical characteristics of rationally designed optical nanopatterns. These lenses demonstrated binocular parallax-induced stereoscopy via nanoline array polarization and acted as cutoff filters, with nanodot arrays, capable of treating Irlen syndrome.


Assuntos
Materiais Biocompatíveis/química , Lentes de Contato , Ácido Hialurônico/química , Impressão , Materiais Inteligentes/química , Água/química , Percepção de Profundidade , Nanoestruturas/química , Poliuretanos/química , Prata/química
19.
Horm Behav ; 132: 104993, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33991799

RESUMO

Thyroid hormones have a profound influence on development, cellular differentiation and metabolism, and are also suspected of playing a role in aggression. We measured territorial aggression, body temperature (Tb) and serum thyroid hormones levels of male striped hamsters (Cricetulus barabensis) acclimated to either cold (5 °C), cool (21 °C) or hot (34 °C) ambient temperatures. The effects of methimazole on territorial aggression, food intake, metabolic rate and serum thyroid hormone levels, were also examined. Territorial aggression was significantly lower in male hamsters acclimated to the hot temperature compared to those acclimated to the cool or cold temperatures. Tb significantly increased during aggressive territorial interactions with intruders but did not significantly differ among the three temperature treatments. Serum T3, T4 and cortisol levels of hamsters acclimated to 34 °C were significantly lower than those acclimated to 21 °C. In addition to significantly reducing territorial aggression, treatment with methimazole also significantly reduced serum T3 and T4 levels, Tb and metabolic rate. These results suggest that exposure to high temperatures reduces the capacity of hamsters to dissipate heat causing them to lower their metabolic rate, which, in turn, causes them to reduce territorial aggression to prevent hyperthermia. The lower metabolic rate mediated by down-regulated thyroid hormones inhibits territorial aggression and could thereby determine the outcome of territorial conflicts.


Assuntos
Agressão , Temperatura Alta , Aclimatação , Animais , Cricetinae , Cricetulus , Masculino , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...