Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Sci Total Environ ; 941: 172870, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38782279

RESUMO

There is a growing consensus on expanding protected and conserved areas for biodiversity conservation. Nevertheless, it remains uncertain where to expand conserved areas as well as what appropriate management modalities to choose. Moreover, conserved areas expansion should be balanced with crop-related food security challenges. We developed a framework to identify cost-effective areas for expanding protected areas and other effective area-based conservation measures (OECMs), and applied it to China. By combining templates for biodiversity conservation priorities at global scale and the priority conservation areas based on 2413 vertebrates' extinction risk in China, we identified areas with high biodiversity conservation value. We then categorized the priority areas according to human impact, indicating the potential cost of management. As a result of combining the two aspects above, we identified the most cost-effective areas for expanding protected areas and OECMs while excluding both the current and predicted croplands that can be used for food security. The results show that China could expand its protected areas to 22.81 % of the country's land area and establish OECMs in areas accounting for 9.82 % and 17.37 % of the country's land area in a cost-effective approach in two scenarios. In the ambitious scenario, protected and conserved areas would account for a maximum of 40.18 % of terrestrial area, with an average 62.67 % coverage of the 2413 species' suitable habitat. To achieve the goals of protected and conserved areas in Kunming-Montreal Global Biodiversity Framework, countries could apply this framework to identify their protected areas and OECM expansion priorities.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Análise Custo-Benefício , Segurança Alimentar , Conservação dos Recursos Naturais/métodos , China , Segurança Alimentar/métodos
2.
J Hematol Oncol ; 17(1): 7, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302992

RESUMO

BACKGROUND: While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS: Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS: METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS: Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Células-Tronco Neoplásicas/patologia , Biossíntese de Proteínas , Ribossomos/metabolismo , RNA
3.
Sci Total Environ ; 912: 169070, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056645

RESUMO

Protected areas (PAs) play a crucial role in halting biodiversity loss and mitigating climate change. However, research on the advantages of integrating biodiversity conservation and climate mitigation within PAs remains limited, and there is a deficiency in holistic, scientifically supported management strategies. To address these gaps, we conducted a case study in China, comparing the conservation effectiveness of designating conservation priorities considering either single or multiple objectives, including biodiversity conservation and carbon neutrality. The results showed that integrating multiple values could truly increase the effectiveness of PAs compared to a single value considered. Over 1/4 of China's terrestrial area had a significant contribution for both biodiversity conservation and carbon neutrality, yet remained unprotected. Expanding PAs in these areas holds tremendous win-win biodiversity conservation and carbon neutrality opportunity. We delineated different conservation priorities for comprehensive management and outlined strategies for different types of areas. The framework presented in this study can serve as a reference for other places with comparable scales or management objectives.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Carbono , Biodiversidade , China
4.
Genes Dis ; 11(1): 382-396, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37588203

RESUMO

As the most common internal modification of mRNA, N6-methyladenosine (m6A) and its regulators modulate gene expression and play critical roles in various biological and pathological processes including tumorigenesis. It was reported previously that m6A methyltransferase (writer), methyltransferase-like 3 (METTL3) adds m6A in primary microRNAs (pri-miRNAs) and facilitates its processing into precursor miRNAs (pre-miRNAs). However, it is unknown whether m6A modification also plays a role in the maturation process of pre-miRNAs and (if so) whether such a function contributes to tumorigenesis. Here, we found that YTHDF2 is aberrantly overexpressed in acute myeloid leukemia (AML) patients, especially in relapsed patients, and plays an oncogenic role in AML. Moreover, YTHDF2 promotes expression of miR-126-3p (also known as miR-126, as it is the main product of precursor miR-126 (pre-miR-126)), a miRNA that was reported as an oncomiRNA in AML, through facilitating the processing of pre-miR-126 into mature miR-126. Mechanistically, YTHDF2 recognizes m6A modification in pre-miR-126 and recruits AGO2, a regulator of pre-miRNA processing, to promote the maturation of pre-miR-126. YTHDF2 positively and negatively correlates with miR-126 and miR-126's downstream target genes, respectively, in AML patients, and forced expression of miR-126 could largely rescue YTHDF2/Ythdf2 depletion-mediated suppression on AML cell growth/proliferation and leukemogenesis, indicating that miR-126 is a functionally important target of YTHDF2 in AML. Overall, our studies not only reveal a previously unappreciated YTHDF2/miR-126 axis in AML and highlight the therapeutic potential of targeting this axis for AML treatment, but also suggest that m6A plays a role in pre-miRNA processing that contributes to tumorigenesis.

6.
Cell Stem Cell ; 30(8): 1072-1090.e10, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541212

RESUMO

TET2 is recurrently mutated in acute myeloid leukemia (AML) and its deficiency promotes leukemogenesis (driven by aggressive oncogenic mutations) and enhances leukemia stem cell (LSC) self-renewal. However, the underlying cellular/molecular mechanisms have yet to be fully understood. Here, we show that Tet2 deficiency significantly facilitates leukemogenesis in various AML models (mediated by aggressive or less aggressive mutations) through promoting homing of LSCs into bone marrow (BM) niche to increase their self-renewal/proliferation. TET2 deficiency in AML blast cells increases expression of Tetraspanin 13 (TSPAN13) and thereby activates the CXCR4/CXCL12 signaling, leading to increased homing/migration of LSCs into BM niche. Mechanistically, TET2 deficiency results in the accumulation of methyl-5-cytosine (m5C) modification in TSPAN13 mRNA; YBX1 specifically recognizes the m5C modification and increases the stability and expression of TSPAN13 transcripts. Collectively, our studies reveal the functional importance of TET2 in leukemogenesis, leukemic blast cell migration/homing, and LSC self-renewal as an mRNA m5C demethylase.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/metabolismo , Carcinogênese/metabolismo , Células-Tronco/metabolismo , Desmetilação , Células-Tronco Neoplásicas/metabolismo , Tetraspaninas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo
7.
Cell ; 186(15): 3208-3226.e27, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37379838

RESUMO

N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.


Assuntos
DNA Helicases , RNA Helicases , DNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Helicases/metabolismo , Grânulos de Estresse , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação ao GTP/metabolismo , RNA Mensageiro/metabolismo , Grânulos Citoplasmáticos/metabolismo
8.
J Diabetes Res ; 2023: 5087761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091044

RESUMO

Background: Ectodysplasin A (EDA), a member of the TNF family, plays important roles in ectodermal development, while recent studies expanded its regulatory effects on insulin resistance and lipid metabolism. This study was the first time to investigate the correlation between circulating EDA and albuminuria in patients with T2DM. Methods: A total of 189 T2DM and 59 healthy subjects were enrolled in the study. We analyzed the concentrations of EDA by ELISA. Plasma glucose, insulin, HbA1c, lipids, creatinine, BUN, and UACR were also measured. Insulin resistance and pancreatic cell function were assessed by HOMA. Results: Circulating EDA concentration was significantly increased in T2DM patients and increased with the degree of albuminuria. EDA was positively correlated with age, FIns, HOMA-IR, HOMA-ß, Scr, and UACR, and negatively correlated with eGFR. Linear stepwise regression showed that FIns, HOMA-ß, and UACR were independent influencing factors of EDA. Logistic regression analysis showed that EDA was independently associated with the occurrence of albuminuria in T2DM. ROC curve showed that EDA had an area under the receiver operating curve of 0.701 [95%CI = (0.625 - 0.777), P < 0.001]. Conclusion: EDA is positively correlated with the degree of albuminuria in patients with T2DM and may be involved in the occurrence and progression of diabetic kidney disease (DKD).


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Resistência à Insulina , Humanos , Albuminúria , Ectodisplasinas
9.
Sci Transl Med ; 15(689): eabq8513, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989375

RESUMO

Although the overall survival rate of B cell acute lymphoblastic leukemia (B-ALL) in childhood is more than 80%, it is merely 30% in refractory/relapsed and adult patients with B-ALL. This demonstrates a need for improved therapy targeting this subgroup of B-ALL. Here, we show that the ten-eleven translocation 1 (TET1) protein, a dioxygenase involved in DNA demethylation, is overexpressed and plays a crucial oncogenic role independent of its catalytic activity in B-ALL. Consistent with its oncogenic role in B-ALL, overexpression of TET1 alone in normal precursor B cells is sufficient to transform the cells and cause B-ALL in mice within 3 to 4 months. We found that TET1 protein is stabilized and overexpressed because of its phosphorylation mediated by protein kinase C epsilon (PRKCE) and ATM serine/threonine kinase (ATM), which are also overexpressed in B-ALL. Mechanistically, TET1 recruits STAT5B to the promoters of CD72 and JCHAIN and promotes their transcription, which in turn promotes B-ALL development. Destabilization of TET1 protein by treatment with PKC or ATM inhibitors (staurosporine or AZD0156; both tested in clinical trials), or by pharmacological targeting of STAT5B, greatly decreases B-ALL cell viability and inhibits B-ALL progression in vitro and in vivo. The combination of AZD0156 with staurosporine or vincristine exhibits a synergistic effect on inhibition of refractory/relapsed B-ALL cell survival and leukemia progression in PDX models. Collectively, our study reveals an oncogenic role of the phosphorylated TET1 protein in B-ALL independent of its catalytic activity and highlights the therapeutic potential of targeting TET1 signaling for the treatment of refractory/relapsed B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogênicas , Animais , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Fosforilação , Estaurosporina , Transdução de Sinais , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo
10.
Endocrine ; 79(3): 469-476, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592295

RESUMO

PURPOSE: Tsukushi (TSK), a novel hepatokine, has recently been pointed out to play an important role in energy homeostasis and glycolipid metabolism. However, there are no clinical studies on the association of TSK with metabolic syndrome (MetS), the typical constellation of metabolic disorders. This study was conducted to explore the relationship between TSK and MetS as well as each of its metabolic component clinically. METHODS: We analyzed in this cross-sectional study serum TSK levels by ELISA in 392 participants, including 90 non-MetS and 302 MetS, to compare TSK in two groups and in different numbers of metabolic components. The odds ratios (OR) of TSK quartile in MetS and each metabolic component were computed by multivariate logistic regression analysis. RESULTS: TSK was substantially higher in MetS than in non-MetS subjects (P < 0.001). TSK increased with the concomitant increase of the number of metabolic components (P for <0.001). Logistic regression analyses demonstrated that the OR of MetS was 2.74 for the highest versus the lowest quartile of TSK (P < 0.001) after adjusting for age, gender, smoking status, alcohol consumption and medication use. Additionally, TSK was associated with the OR of poor HDL-C and elevated fasting glucose (P < 0.05). CONCLUSION: Circulating TSK was higher in MetS patients and linked with MetS risk, suggesting that TSK may play a role in the genesis of MetS and be a potential therapeutic target for MetS. Future study should investigate the connection between TSK levels and MetS pathogenesis.


Assuntos
Síndrome Metabólica , Humanos , Síndrome Metabólica/complicações , Estudos Transversais , Glucose , Fumar , Fatores de Risco
11.
J Autoimmun ; 135: 102993, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642058

RESUMO

BACKGROUND & AIMS: The N6-methyladenosine (m6A) reader YTH domain-containing family protein 2 (YTHDF2) is critically involved in a multiplicity of biological processes by mediating the degradation of m6A modified mRNAs. Based on our current understanding of this process, we hypothesized that YTHDF2 will play a role in the natural history and function of myeloid-derived suppressor cells (MDSC) and in particular in AIH. APPROACH & RESULTS: We took advantage of YTHDF2 conditional knock-out mice to first address the phenotype and function of MDSCs by flow cytometry. Importantly, the loss of YTHDF2 resulted in a gradual elevation of MDSCs including PMN-MDSCs both in liver and ultimately in the BM. Notably, YTHDF2 deficiency in myeloid cells attenuated concanavalin (ConA)-induced liver injury, with enhanced expansion and chemotaxis to liver. Furthermore, MDSCs from Ythdf2CKO mice had a greater suppressive ability to inhibit the proliferation of T cells. Using multi-omic analysis of m6A RNA immunoprecipitation (RIP) and mRNA sequencing, we noted RXRα as potential target of YTHDF2. Indeed YTHDF2-RIP-qPCR confirmed that YTHDF2 directly binds RXRα mRNA thus promoting degradation and decreasing gene expression. Finally, by IHC and immunofluorescence, YTHDF2 expression was significantly upregulated in the liver of patients with AIH which correlated with the degree of inflammation. CONCLUSION: Suppression of YTHDF2 enhances the expansion, chemotaxis and suppressive function of MDSCs and our data reveals a unique therapeutical target in immune mediated hepatitis.


Assuntos
Hepatite Autoimune , Células Supressoras Mieloides , Animais , Camundongos , Células Mieloides , Linfócitos T , Fatores de Transcrição/metabolismo
12.
Cell Stem Cell ; 30(1): 52-68.e13, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608679

RESUMO

N6-methyladenosine (m6A), the most prevalent internal modification in mammalian mRNAs, is involved in many pathological processes. METTL16 is a recently identified m6A methyltransferase. However, its role in leukemia has yet to be investigated. Here, we show that METTL16 is a highly essential gene for the survival of acute myeloid leukemia (AML) cells via CRISPR-Cas9 screening and experimental validation. METTL16 is aberrantly overexpressed in human AML cells, especially in leukemia stem cells (LSCs) and leukemia-initiating cells (LICs). Genetic depletion of METTL16 dramatically suppresses AML initiation/development and maintenance and significantly attenuates LSC/LIC self-renewal, while moderately influencing normal hematopoiesis in mice. Mechanistically, METTL16 exerts its oncogenic role by promoting expression of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) and BCAT2 in an m6A-dependent manner and reprogramming BCAA metabolism in AML. Collectively, our results characterize the METTL16/m6A/BCAT1-2/BCAA axis in leukemogenesis and highlight the essential role of METTL16-mediated m6A epitranscriptome and BCAA metabolism reprograming in leukemogenesis and LSC/LIC maintenance.


Assuntos
Autorrenovação Celular , Leucemia Mieloide Aguda , Camundongos , Humanos , Animais , Leucemia Mieloide Aguda/patologia , Carcinogênese/patologia , RNA Mensageiro/metabolismo , Aminoácidos de Cadeia Ramificada/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Células-Tronco Neoplásicas/patologia , Mamíferos/metabolismo , Transaminases/genética , Transaminases/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
13.
J Environ Manage ; 325(Pt A): 116505, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270131

RESUMO

As the most biodiversity-rich part of the protected areas system, habitats within the pilot national parks have long been threatened by drastic human-induced land use and land cover changes. The growing concern about habitat loss has spurred China's national park project to shift from pilot to construction phase with the official establishment of China's first group of national parks (CFGNPs) in October 2021. But far too little attention has been paid to the synergistic work concerning the habitat quality (HQ) dynamics of all five national parks. Here, the InVEST model, combined with a satellite-derived land use and land cover product and a hot spot analysis (HSA) method, was used to investigate the HQ dynamics at the park- and pixel-scale within the CFGNPs. Our results demonstrate that the past ecological conservation practices within national parks have been unpromising, especially in Giant Panda National Park, Northeast China Tiger and Leopard National Park (NCTL), and Wuyi Mountain National Park (WYM), where HQ as a whole showed a significant decline. Furthermore, more than half of Hainan Tropical Rainforest National Park (87.2%), WYM (77.4%), and NCTL (52.9%) showed significant HQ degradation from 1980 to 2019. Besides, increasing trends in the area shares of HQ degraded pixels were observed in all five national parks from 1980-1999 to 2000-2019. The HSA implied that the hot spots of high HQ degradation rates tend to occur in areas closer to urban settlements or on the edge of national parks, where human activities are intensive. Despite these disappointing findings, we highlighted from the observed local successes and the HQ plateau that the construction of CFGNPs is expected to reverse the deteriorating HQ trends. Thus, we concluded our paper by proposing an HSA-based regulatory zoning scheme that includes five subzones to guide the future construction of China's national park system.


Assuntos
Conservação dos Recursos Naturais , Parques Recreativos , Humanos , Conservação dos Recursos Naturais/métodos , Ecossistema , Biodiversidade , China
14.
J Environ Manage ; 324: 116330, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208513

RESUMO

Global biodiversity is declining at an unprecedented rate, and the Post-2020 Global Biodiversity Framework requires each country to fulfill the conservation targets in biodiversity-inclusive spatial planning. Croplands provide habitat and food for many species, making them crucial for biodiversity conservation in addition to food production. Assessing conservation priorities in cropland is a prerequisite to allocate conservation resources and plan actions for better conservation outcomes. Yet quantitative methods to assess cropland conservation priority for biodiversity conservation at a national scale are still lacking. We proposed a framework for identifying the conservation priority in cropland for bird species at a national scale and applied the framework in China. We calculated the suitable habitat for each species and used a complementarity-based approach to designate the irreplaceable conservation priority areas considering richness, threatened level, and conservation percentage targets. We identified cropland taking up 6.76% of China's land area as a bird conservation priority, partially covering the suitable habitat of all the study species. By analyzing the landscape pattern of the priority areas and species' foraging traits, we provided policy-making suggestions according to area-specific characteristics. This framework can be used to identify priority areas for large-scale biodiversity conservation for different countries.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Conservação dos Recursos Naturais/métodos , Ecossistema , Aves , Produtos Agrícolas
15.
Theranostics ; 12(13): 5727-5743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966596

RESUMO

RNA N6 -methyladenosine (m6A) modification and its regulators fine tune gene expression and contribute to tumorigenesis. This study aims to uncover the essential role and the underlying molecular mechanism(s) of the m6A reader YTHDC1 in promoting triple negative breast cancer (TNBC) metastasis. METHODS: In vitro and in vivo models were employed to determine the pathological function of YTHDC1 in TNBC metastasis. To identify bona fide YTHDC1 target RNAs, we conducted RNA-seq, m6A-seq, and RIP-seq, followed by integrative data analysis and validation assays. RESULTS: By analyzing The Cancer Genome Atlas (TCGA) dataset, we found that elevated expression of YTHDC1 is positively correlated with poor prognosis in breast cancer patients. Using a mammary fat pad mouse model of TNBC, YTHDC1 significantly promoted lung metastasis of TNBC cells. Through multiple transcriptome-wide sequencing and integrative data analysis, we revealed dysregulation of metastasis-related pathways following YTHDC1 depletion and identified SMAD3 as a bona fide YTHDC1 target RNA. Depletion of YTHDC1 caused nuclear retention of SMAD3 mRNA, leading to lower SMAD3 protein levels. Loss of YTHDC1 led to impaired TGF-ß-induced gene expression, leading to inhibition of epithelial-mesenchymal transition (EMT) and suppressed TNBC cell migration and invasion. SMAD3 overexpression was able to restore the response to TGF-ß in YTHDC1 depleted TNBC cells. Furthermore, we demonstrated that the oncogenic role of YTHDC1 is mediated through its recognition of m6A as m6A-binding defective mutants of YTHDC1 were unable to rescue the impaired cell migration and invasion of YTHDC1 knockout TNBC cells. CONCLUSIONS: We show that YTHDC1 plays a critical oncogenic role in TNBC metastasis through promoting the nuclear export and expression of SMAD3 to augment the TGF-ß signaling cascade. Overall, our study demonstrates that YTHDC1 is vital for TNBC progression by enhancing TNBC cell survival and TGF-ß-mediated EMT via SMAD3 to enable the formation of distant metastasis and highlights the therapeutic potential of targeting the YTHDC1/m6A/SMAD3 axis for TNBC treatment.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
16.
Clin Biochem ; 109-110: 44-50, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35961579

RESUMO

BACKGROUND: Carotid plaque is one of the typical manifestations and precursors of diabetic cardiovascular complications. As a new adipokine, asprosin participates in the development of diabetes and cardiovascular diseases, and is considered to be closely related to insulin resistance and glucolipid metabolism. This study aimed to analyze the relationship between serum asprosin level and carotid plaque in patients with type 2 diabetes mellitus (T2DM). METHODS: A total of 180 patients with T2DM were selected. The basic parameters and biochemical indexes of the subjects were measured, and the serum asprosin concentration of the subjects was detected by ELISA. The carotid plaque was evaluated by color Doppler ultrasound. RESULTS: The level of serum asprosin in the T2DM with carotid plaque group was significantly higher than that in T2DM without carotid plaque group [2.53(1.73-3.21) vs 1.72(1.23-2.34) ng/mL, P < 0.05]. The incidence of carotid plaque in the low, middle and high quartiles was 31.7 %, 48.3 % and 70 % respectively. Correlation analysis showed that serum asprosin was positively correlated with BMI, WHR, SBP, DBP, FIns, LDL-C, HOMA-IR, and HOMA-ß (P < 0.05). Linear regression analysis showed that WHR, DBP, FIns, and LDL-C were independent influencing factors of asprosin. Logistic regression analysis showed that serum asprosin was still significantly correlated with carotid plaque in T2DM patients after adjusting for multiple confounding factors. The area under receiver-operating curve (ROC) of asprosin predicting carotid plaque was 0.701 (0.625-0.777) in T2DM. CONCLUSION: The level of serum asprosin in T2DM patients with carotid plaques is significantly higher, suggesting that asprosin may play a role in the occurrence and development of carotid plaques in T2DM. Detection of this index can provide new clinical evidence for the prevention and treatment of diabetic cardiovascular disease.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Placa Aterosclerótica , Humanos , Diabetes Mellitus Tipo 2/complicações , LDL-Colesterol
17.
Genes Dis ; 9(3): 697-704, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35782970

RESUMO

This study investigated the role of N6-methyladenosine RNA methylation in liver regeneration following partial hepatectomy in mice. We created a liver-specific knockout mouse model by the deletion of Mettl3, a key component of the N6-methyladenosine methyltransferase complex, using the albumin-Cre system. Mettl3 liver-specific knockout mice and their wild-type littermates were subjected to 2/3 partial hepatectomy. Transcriptomic changes in liver tissue at 48 h after partial hepatectomy were detected by RNA-seq. Immunohistochemistry and immunofluorescence were used to determine protein expression levels of Ki67, hepatocyte nuclear factor 4 alpha, and cytokeratin 19. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling was also performed. Liver weight/body weight ratios after partial hepatectomy were significantly lower in Mettl3 liver-specific knockout mice than in wild-type mice at 48 h after 2/3 partial hepatectomy (3.1% ± 0.11% vs. 2.7% ± 0.03%). Compared with wild-type littermates, Mettl3 liver-specific knockout mice showed reduced bromodeoxyuridine staining and reduced Ki-67 expression at 48 h after 2/3 partial hepatectomy. RNA-seq analysis showed that Mettl3 liver-specific knockout delayed the cell cycle progression in murine liver by downregulating the expression levels of genes encoding cyclins D1, A2, B1, and B2. Loss of Mettl3-mediated N6-methyladenosine function led to attenuated liver regeneration by altering the mRNA decay of suppressor of cytokine signaling 6, thereby inhibiting the phosphorylation of signal transducer and activator of transcription 3 during early liver regeneration. These results demonstrated the importance of N6-methyladenosine mRNA modification in liver regeneration and suggest that Mettl3 targeting might facilitate liver regeneration.

18.
Sci Total Environ ; 846: 157348, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35842159

RESUMO

Preserving wilderness areas is one of the key goals in the Post-2020 Global Biodiversity Framework(GBF). However, far too little attention has been paid to identifying wilderness conservation priorities on the national scale. In this study, we developed a methodological framework to evaluate the ecosystem service values, potential loss and conservation priorities of wilderness areas in China, providing guidance for wilderness conservation. First, we assessed the conservation value of wilderness areas and found that wilderness areas provided more ecosystem services than non-wilderness areas per unit area in most ecoregions. Then we identified threatened wilderness areas under multiple scenarios due to land use and land cover change. We found that 5.82 % of the existing wilderness areas were projected to be lost by 2100. Finally, wilderness conservation priorities were identified considering both conservation values and potential loss, and 11.24 % of existing wilderness areas were highlighted as conservation priorities. This methodological framework could be applied to other countries to support post-2020 global biodiversity conservation.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , China , Meio Selvagem
19.
Front Oncol ; 12: 840287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280774

RESUMO

The ATP binding cassette (ABC) transporter family is ubiquitous in eukaryotes, specifically in vertebrates, and plays a crucial role in energy homeostasis, cell signaling, and drug resistance. Accumulating evidence indicates that some ABC transporters contribute to cancer cell proliferation and tumor progression; however, relatively little is known about the behavior of the ABC transporter family in hepatocellular carcinoma (HCC). By analyzing two public transcriptomic databases, we evaluated the effect of genes in the ABC transporter family on HCC prognostic prediction; ABCC6 was selected for further study. Notably, ABCC6 was found to be downregulated in HCC tissues and correlated with favorable outcomes in patients with HCC. Moreover, ABCC6 knockdown not only significantly promoted cell proliferation in vitro and in vivo, but also inhibited cell cycle arrest and cell apoptosis. Transcriptome analysis revealed that ABCC6 depletion enhanced the "mitotic cell cycle" and "DNA replication" pathways, and suppressed the "PPAR signaling pathway". Further investigation demonstrated that PPARα, one of the key regulators in peroxisome metabolism, is located downstream of ABCC6. In summary, our study provides profound insights into the behavior of ABC transporter family genes in various HCC cohorts, identifies ABCC6 as a biomarker for early-stage HCC diagnosis, and offers experimental basis for further investigations of targeting ABCC6 in the treatment of patients with HCC.

20.
Diab Vasc Dis Res ; 19(1): 14791641221083396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345912

RESUMO

PURPOSE: Triglyceride-glucose (TyG) index is a reliable and inexpensive alternative indicator of insulin resistance. Previous studies have shown that elevated TyG index increases the risk of diabetes, coronary heart disease, and other diseases, but the relationship between TyG index and cardiac hemodynamics in patients with type 2 diabetes mellitus (T2DM) is not clear. This study was conducted in patients with T2DM to assess the relationship between TyG and cardiac hemodynamics and its predictive ability for T2DM. METHODS: A total of 647 individuals (348 males and 299 females) were enrolled in this study, including 446 T2DM patients and 201 healthy controls. The clinical data and related laboratory variables were assessed and recorded, and TyG index was calculated. Cardiac hemodynamics was measured by echocardiography. Pearson or Spearman correlation analysis and linear regression analysis were conducted to explore the association between TyG and cardiac hemodynamics. The receiver operating characteristics (ROC) curve was used to evaluate the efficacy of TyG index in the diagnosis of T2DM. RESULTS: Compared with healthy controls, the systolic blood pressure (SBP), body weight, body mass index (BMI), waist circumference (WC), hip circumference (HC), HOMA-IR, and TyG levels were higher in patients with T2DM. With the increase of TyG, the levels of left ventricular mass index (LVMI), left ventricular mass (LVM), left ventricular end diastolic diameter (LVDd), posterior wall thickness (PWT), and interventricular septum thickness (IVST) were also increased in T2DM individuals. Multivariate linear regression analysis showed that TyG was an independent determinant of LVEF, PWT, IVST, and ejection time (ET) after adjusting for confounding factors. In addition, individuals with visceral obesity had higher TyG and TyG can be used as a predictor of T2DM with an AUC of 0.903 (95% CI:0.879-0.927). CONCLUSIONS: The increase of TyG index is closely related to cardiac hemodynamics of T2DM patients, which is expected to be a simple and practical biological index to predict the changes of cardiac function in patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Glicemia/análise , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Feminino , Glucose , Hemodinâmica , Humanos , Masculino , Fatores de Risco , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...