Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.550
Filtrar
1.
J Colloid Interface Sci ; 678(Pt B): 388-399, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39255596

RESUMO

The traditional preparation of nanocomposite proton exchange membranes (PEM) is hindered by poor organic-inorganic interface compatibility, insufficient proton-conducting sites, easy aggregation of nanoparticles, and difficulty in leveraging nanoscale advantages. In this study, a novel method involving electrochemical anodic oxidation exfoliation was employed to prepare melamine-coated graphene oxide (Me@GO), which was subsequently subjected to in-situ polymerization with poly(2,5-benzimidazole) (ABPBI) to prepare a Me@GO/ABPBI composite proton exchange membrane. Benefiting from the strong hydrogen bonding and large π stacking interactions, melamine (Me) tightly bound to graphene oxide (GO), effectively preventing the secondary aggregation of GO after exfoliation. Moreover, the abundant alkaline functional groups of melamine enhanced the enhancement of phosphoric acid (PA) retention in the Me@GO/ABPBI membranes, thereby increasing the number of proton-conducting sites. The experimental results indicated that the introduction of Me@GO enhanced membrane properties. For Me@GO at a concentration of 1 wt%, the tensile strength of the 1Me@GO/ABPBI composite membrane reached 207 MPa, nearly 2.52 times that of the pure membrane. The proton conductivity of the 1Me@GO/ABPBI composite membrane reached 0.01 S cm-1 across a wide temperature range (40-180 °C), peaking at 0.087 S cm-1 at 180 °C. Additionally, a single-cell incorporating the 1Me@GO/ABPBI composite membrane achieved a peak power density of 0.304 W cm-2 at 160 °C, nearly 1.46 times that of the pure membrane. Benefiting from the well-dispersed and PA-enriched proton channels provided by Me@GO, the Me@GO/ABPBI composite membrane exhibits excellent prospects for wide-temperature range (40-180 °C) applications.

2.
Acta Pharm Sin B ; 14(8): 3457-3475, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39220884

RESUMO

Tumor metastasis, the apex of cancer progression, poses a formidable challenge in therapeutic endeavors. Circulating tumor cells (CTCs), resilient entities originating from primary tumors or their metastases, significantly contribute to this process by demonstrating remarkable adaptability. They survive shear stress, resist anoikis, evade immune surveillance, and thwart chemotherapy. This comprehensive review aims to elucidate the intricate landscape of CTC formation, metastatic mechanisms, and the myriad factors influencing their behavior. Integral signaling pathways, such as integrin-related signaling, cellular autophagy, epithelial-mesenchymal transition, and interactions with platelets, are examined in detail. Furthermore, we explore the realm of precision nanomedicine design, with a specific emphasis on the anoikis‒platelet interface. This innovative approach strategically targets CTC survival mechanisms, offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy. The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.

3.
J Cell Mol Med ; 28(18): e70099, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39300699

RESUMO

Along with mounting evidence that gut microbiota and their metabolites migrate endogenously to distal organs, the 'gut-lung axis,' 'gut-brain axis,' 'gut-liver axis' and 'gut-renal axis' have been established. Multiple animal recent studies have demonstrated gut microbiota may also be a key susceptibility factor for neurological disorders such as Alzheimer's disease, Parkinson's disease and autism. The gastrointestinal tract is innervated by the extrinsic sympathetic and vagal nerves and the intrinsic enteric nervous system, and the gut microbiota interacts with the nervous system to maintain homeostatic balance in the host gut. A total of 1507 publications on the interactions between the gut microbiota, the gut-brain axis and neurological disorders are retrieved from the Web of Science to investigate the interactions between the gut microbiota and the nervous system and the underlying mechanisms involved in normal and disease states. We provide a comprehensive overview of the effects of the gut microbiota and its metabolites on nervous system function and neurotransmitter secretion, as well as alterations in the gut microbiota in neurological disorders, to provide a basis for the possibility of targeting the gut microbiota as a therapeutic agent for neurological disorders.


Assuntos
Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , Doenças do Sistema Nervoso , Humanos , Microbioma Gastrointestinal/fisiologia , Animais , Doenças do Sistema Nervoso/microbiologia , Doenças do Sistema Nervoso/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Sistema Nervoso Entérico/metabolismo , Encéfalo/metabolismo , Sistema Nervoso/metabolismo , Sistema Nervoso/microbiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo
4.
Heliyon ; 10(17): e37039, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296049

RESUMO

Aiming at the large aspect ratio characteristics of large wind turbines, it is easy to cause irreversible damage due to flutter during operation. A two-degree-of-freedom (plunge and pitch) flutter test bench was built using the time domain and frequency domain analysis methods of dynamic signals. The influence of different centroid positions on the flutter boundary was studied. The test shows that the closer the centroid position is to the leading edge of the wing segment, the better the aeroelastic stability of the wing segment is. Under the linear condition, the forward movement of the centroid position has a more significant influence on the flutter. In addition, the main reason for the wing flutter is related to the decrease of net damping and the coupling of the aeroelastic natural frequency of the pitching and plunging motions. The pitch motion is dominant in the two-degree-of-freedom motion. The farther the centre of mass is from the torsion axis, the greater the pitch and plunge motion displacement. The pitch motion has a more significant impact on the system than the plunge motion. Therefore, the study of flutter suppression should focus on pitch motion.

5.
Plant Physiol Biochem ; 216: 109091, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39244886

RESUMO

Microbe-material hybrid systems which facilitate the solar-driven synthesis of high-value chemicals, harness the unique capabilities of microbes, maintaining the high-selectivity catalytic abilities, while concurrently incorporating exogenous materials to confer novel functionalities. The effective assembly of both components is essential for the overall functionality of microbe-material hybrid systems. Herein, we conducted a critical review of microbe-material hybrid systems for solar energy conversion focusing on the perspective of interface assembly strategies between microbes and materials, which are categorized into five types: cell uptake, intracellular synthesis, extracellular mineralization, electrostatic adsorption, and cell encapsulation. Moreover, this review elucidates the mechanisms by which microbe-material hybrid systems convert elementary substrates, such as carbon dioxide, nitrogen, and water, into high-value chemicals or materials for energy generation.

6.
Infect Drug Resist ; 17: 3851-3861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247757

RESUMO

Objective: Our aim was to elucidate the resistance mechanisms and assess the combined synergistic and bactericidal activities of aztreonam in combination with ceftazidime/avibactam (CZA), meropenem/vaborbactam (MEV), and imipenem/relebactam (IMR) against Enterobacterales strains producing dual carbapenemases. Methods: Species identification, antimicrobial susceptibility testing and determination of carbapenemase type were performed for these strains. Plasmid sizes, plasmid conjugation abilities and the localization of carbapenemase genes were investigated. Whole-genome sequencing was performed for all strains and their molecular characteristics were analyzed. In vitro synergistic and bactericidal activities of the combination of aztreonam with CZA, MEV and IMR against these strains were determined using checkerboard assay and time-kill curve assay. Results: A total of 12 Enterobacterales strains producing dual-carbapenemases were collected, including nine K. pneumoniae, two P. rettgeri, and one E. hormaechei. The most common dual-carbapenemase gene pattern observed was bla (KPC-2+NDM-5) (n=4), followed by bla KPC-2+IMP-26 (n=3), bla (KPC-2+NDM-1) (n=2), bla (KPC-2+IMP-4) (n=1), bla (NDM-1+IMP-4) (n=1) and bla (KPC-2+KPC-2) (n=1). In each strain, the carbapenemase genes were found to be located on two distinct plasmids which were capable of conjugating from the original strain to the receipt strain E. coli J53. The results of the checkerboard synergy analysis consistently revealed good synergistic effects of the combination of ATM with CZA, MEV and IMR. Except for one strain, all strains exhibited significant synergistic activity and bactericidal activity between 2 and 8 hours. Conclusion: Dual-carbapenemase-producing Enterobacterales posed a significant threat to clinical anti-infection treatment. However, the combination of ATM with innovative ß-lactam/ß-lactamase inhibitor compounds had proven to be an effective treatment option.

7.
Biomark Med ; : 1-10, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254332

RESUMO

Aim: To investigate the association between serum homocysteine (HCY) levels, red blood cell folate (RCF) levels, methylenetetrahydrofolate reductase (MTHFR) gene polymorphism and infertility.Materials & methods: Serum HCY and RCF levels and C677T polymorphism of MTHFR gene were analyzed in 149 infertile patients and 223 women of normal reproductive age with healthy childbirth history.Results: The HCY level of MTHFR C677T TT genotype infertility patients was higher than that of women of normal reproductive age, while the RCF level was not significantly different between the two groups.Conclusion: Serum HCY levels increased in infertility patients, and the MTHFR C677T TT genotype in childbearing-aged women are associated with a higher risk of infertility. The results showed that HCY level and MTHFR C677T genotype were closely related to infertility.


[Box: see text].

8.
Pestic Biochem Physiol ; 204: 106018, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277354

RESUMO

The biological behavior of flusulfinam, a potential commercial chiral herbicide for rice, has not been well explored. Herein, the uptake of chiral flusulfinam by rice and its transport, degradation, and subcellular distribution in rice (Oryza sativa L.) were investigated. The enantiomeric fraction (EF) in roots was 0.54 during 0 d to 7 d in hydroponic laboratory conditions. The bioconcentration factor of flusulfinam enantiomers was 2.1, suggesting an absence of observed enantioselectivity in the absorption process. Notably, the EF in the shoots decreased to 0.35 on the 7th day. The translocation factors of R- and S-flusulfinam were 0.12 and 0.27, respectively, indicating a preferential transfer of the S-flusulfinam from the root to the shoot. Flusulfinam was identified in the root after spraying. The translocation factors of R- and S-flusulfinam were consistently similar, signifying the capacity for downward movement without enantioselectivity. Interestingly, the degradation half-lives of R- and S-flusulfinam in the total plant were 5.50 and 5.06 d (p < 0.05), respectively, supporting the preferential degradation of S-flusulfinam throughout the total plant. Flusulfinam primarily entered the roots via the apoplastic pathway and was subsequently transported within the plant through aquaporins and ion channels. The subcellular distribution experiment revealed the predominant accumulation of flusulfinam enantiomers in soluble components (84%) with no enantioselectivity in these processes. There was upregulation lipid transfer protein-2 and carboxylesterases15 genes, which could explain the preferential transport and degradation of S-flusulfinam. This study is important in assessing the environmental risk associated with flusulfinam and ensuring food safety.


Assuntos
Herbicidas , Oryza , Oryza/metabolismo , Herbicidas/metabolismo , Estereoisomerismo , Transporte Biológico , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
9.
Foods ; 13(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39272551

RESUMO

The proliferation of antibiotic usage has precipitated the emergence of drug-resistant variants of bacteria, thereby augmenting their capacity to withstand pharmaceutical interventions. Among these variants, Cronobacter sakazakii (C. sakazakii), prevalent in powdered infant formula (PIF), poses a grave threat to the well-being of infants. Presently, global contamination by C. sakazakii is being observed. Consequently, research endeavors have been initiated to explore the strain's drug resistance capabilities, alterations in virulence levels, and resistance mechanisms. The primary objective of this study is to investigate the resistance mechanisms and virulence levels of C. sakazakii induced by five distinct antibiotics, while concurrently conducting transcriptomic analyses. Compared to the susceptible strains prior to induction, the drug-resistant strains exhibited differential gene expression, resulting in modifications in the activity of relevant enzymes and biofilm secretion. Transcriptomic studies have shown that the expression of glutathione S-transferase and other genes were significantly upregulated after induction, leading to a notable enhancement in biofilm formation ability, alongside the existence of antibiotic resistance mechanisms associated with efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. These alterations significantly influence the strain's resistance profile.

10.
Foods ; 13(17)2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39272618

RESUMO

The paocai industry faces challenges related to the production of large volumes of high-salinity and acidic brine by-products. Maintaining paocai quality while reducing brine production is crucial. This study utilized high-throughput sequencing technology to analyze microbial changes throughout the fermentation process, along with the non-volatile flavor compounds and physicochemical properties, to assess the impact of hot-air and salt-pressing pre-dehydration treatments on paocai quality. The findings indicate that pre-dehydration of raw material slowed the fermentation process but enhanced the concentration of non-volatile flavor substances, including free amino acids and organic acids. Hot-air pre-dehydration effectively reduced initial salinity to levels comparable to those in high-salinity fermentation of fresh vegetables. Furthermore, pre-dehydration altered microbial community structures and simplified inter-microbial relationships during fermentation. However, the key microorganisms such as Lactobacillus, Weissella, Enterobacter, Wallemia, Aspergillus, and Kazachstania remained consistent across all groups. Additionally, this study found that biomarkers influenced non-volatile flavor formation differently depending on the treatment, but these substances had minimal impact on the biomarkers and showed no clear correlation with high-abundance microorganisms. Overall, fermenting pre-dehydrated raw materials presents an environmentally friendly alternative to traditional paocai production.

11.
Biosens Bioelectron ; 266: 116727, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39232433

RESUMO

The isolation and identification of pathogenic bacteria from a variety of samples are critical for controlling bacterial infection-related health problems. The conventional methods, such as plate counting and polymerase chain reaction-based approaches, tend to be time-consuming and reliant on specific instruments, severely limiting the effective identification of these pathogens. In this study, we employed the specificity of the cell wall-binding (CBD) domain of the Staphylococcus aureus bacteriophage 80 alpha (80α) endolysin towards the host bacteria for isolation. Amidase 3-CBD conjugated magnetic beads successfully isolated as few as 1 × 102 CFU/mL of S. aureus cells from milk, blood, and saliva. The cell wall hydrolyzing activity of 80α endolysin promoted the genomic DNA extraction efficiency by 12.7 folds on average, compared to the commercial bacterial genomic DNA extraction kit. Then, recombinase polymerase amplification (RPA) was exploited to amplify the nuc gene of S. aureus from the extracted DNA at 37 °C for 30 min. The RPA product activated Cas12a endonuclease activity to cleave fluorescently labeled ssDNA probes. We then converted the generated signal into a fluorescent readout, detectable by either the naked eye or a portable, self-assembled instrument with ultrasensitivity. The entire procedure, from isolation to identification, can be completed within 2 h. The simplicity and sensitivity of the method developed in this study make it of great application value in S. aureus detection, especially in areas with limited resource supply.


Assuntos
Técnicas Biossensoriais , Endopeptidases , Staphylococcus aureus , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/virologia , Técnicas Biossensoriais/métodos , Endopeptidases/química , Endopeptidases/isolamento & purificação , Endopeptidases/genética , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Humanos , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/química , Fagos de Staphylococcus/isolamento & purificação , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Infecções Estafilocócicas/microbiologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Nuclease do Micrococo/química , Nuclease do Micrococo/metabolismo , Nuclease do Micrococo/genética , Proteínas Virais/química , Proteínas Virais/metabolismo
12.
Sci Total Environ ; 953: 176097, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245379

RESUMO

A novel near-zero-discharge recirculating aquaculture system was successfully set up and ran for six months or above. A uniquely designed and 3D printed poly (lactic acid) (PLA) structure was applied as carbon source. The system achieved over 50 % daily nitrogen removal capability and maintained a low NO3-N level of <0.5 mg/L. Steady water quality was observed throughout the experiment period. Microbial distribution was studied and top abundant microorganisms and their general functions in carbon and nitrogen utilization were discussed. Denitrification and L-glutamate formation were identified as two main nitrogen pathways. The cooccurrence network connecting various genera and multiple functions was revealed. Subtilisin was one important PLA degrading enzymes in the system.

13.
Inorg Chem ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39293032

RESUMO

As heterogeneous photocatalysts that can effectively transform CO2 to CO, two MOFs with different metal centers, namely, [M(tipe)(H2O)2](ClO4)2·solvent (M = Ni named as Ni-MOF and M = Co referred to as Co-MOF), were synthesized by reactions of 1,1,2,2-tetrakis(4-(imidazole-1-yl)phenyl)ethene (tipe) with the corresponding metal perchlorate. Both Ni-MOF and Co-MOF have 3D structures, in which the metal centers have the same coordination environment with the N4O2 donor set. Driven by visible light, the CO production catalyzed by Co-MOF is 6734.1 µmol g-1 with 45.3% selectivity, and in contrast, Ni-MOF has 4601.3 µmol g-1 CO production with 97.6% selectivity in 5 h. Through photoelectrochemical characterization, DFT calculations, and in situ FT-IR measurements, the photocatalytic CO2 reduction process catalyzed by Ni-MOF and Co-MOF was investigated. The results show that the metal center of the MOF is crucial for photocatalytic CO2 reduction. This work offers an innovative approach for controlling the performance of photocatalytic CO2 reduction through tuning the metal centers of architectures.

14.
Biosens Bioelectron ; 267: 116770, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39288709

RESUMO

Human sensory techniques are inadequate for automating fish quality monitoring and maintaining controlled storage conditions throughout the supply chain. The dynamic monitoring of a single quality index cannot anticipate explicit freshness losses, which remarkably drops consumer acceptability. For the first time, a complete artificial sensory system is designed for the early detection of fish quality prediction. At non-isothermal storages, the rainbow trout quality is monitored by the gas sensors, texturometer, pH meter, camera, and TVB-N analysis. After data preprocessing, correlation analysis identifies the key parameters such as trimethylamine, ammonia, carbon dioxide, hardness, and adhesiveness to input into a back-propagation neural network. Using gas and textural key parameters, around 99 % prediction accuracy is achieved, precisely classifying fresh and spoiled classes. The regression analysis identifies a few gaps due to fewer datasets for model training, which can be reduced using few-shot learning techniques in the future. However, the multiparametric fusion of texture with gases enables early freshness loss detection and shows the capacity to automate the food supply chain completely.

15.
Biol Psychiatry ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218135

RESUMO

BACKGROUND: Abnormalities in structural-functional connectivity (SC-FC) coupling have been identified globally in patients with major depressive disorder (MDD). However, investigations have neglected the variability and hierarchical distribution of these abnormalities across different brain regions. Furthermore, the biological mechanisms underlying regional SC-FC coupling patterns are not well understood. METHODS: We enrolled 182 patients with MDD and 157 healthy control (HC) subjects, quantifying the intergroup differences in regional SC-FC coupling. The extreme gradient boosting (XGBoost), support vector machines (SVM) and random forest (RF) models were constructed to assess the potential of SC-FC coupling as biomarkers for MDD diagnosis and symptom prediction. Then, we examined the link between changes in regional SC-FC coupling in patients with MDD, neurotransmitter distributions, and gene expression. RESULTS: We observed increased regional SC-FC coupling in default mode network (T = 3.233) and decreased coupling in frontoparietal network (T = -3.471) in MDD relative to HC. XGBoost (AUC = 0.853), SVM (AUC = 0.832) and RF (p < 0.05) models exhibited good prediction performance. The alterations in regional SC-FC coupling in patients with MDD were correlated with the distributions of four neurotransmitters (p < 0.05) and expression maps of specific genes. These genes were strongly enriched in genes implicated in excitatory neurons, inhibitory neurons, cellular metabolism, synapse function, and immune signaling. These findings were replicated on two brain atlases. CONCLUSIONS: This work enhances our understanding of MDD and pave the way for the development of additional targeted therapeutic interventions.

16.
Sci Rep ; 14(1): 18391, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117700

RESUMO

Accurately predicting the state of health (SOH) of lithium-ion batteries is fundamental in estimating their remaining lifespan. Various parameters such as voltage, current, and temperature significantly influence the battery's SOH. However, existing data-driven methods necessitate substantial data from the target domain for training, which hampers the assessment of lithium-ion battery health at the initial stage. To address these challenges, this paper introduces the multi-head attention-time convolution network (MHAT-TCN), amalgamating multi-head attention learning with random block dropout techniques. Additionally, it employs grey relational analysis (GRA) to select health indicators (HIs) highly correlated with battery capacity, thereby enhancing the accuracy of the model training. Employing leave-one-out crossvalidation (LOOCV), the MHAT-TCN network is pre-trained using data from batteries of the same model to facilitate comprehensive prediction of the target battery throughout its operational period. Results demonstrate that the MHAT-TCN network trained on HIs outperforms other models, enabling precise predictions across the entire operational period.

17.
Front Cardiovasc Med ; 11: 1388024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108669

RESUMO

Background: Percutaneous left atrial appendage closure (LAAC) serves as an alternative prophylactic strategy for patients with non-valvular atrial fibrillation (AF) who cannot undergo anti-coagulation therapy. Proper management of associated complications is crucial to enhancing the procedure's success rate and mitigating perioperative risks and adverse events during follow-up. Aims: This study aims to summarize our center's experience and strategies in managing procedural-related complications encountered in 512 cases of LAAC with or without ablation for AF conducted from January 2020 to December 2023. Results: We identified 11 significant intervention-requiring complications associated with LAAC with or without Ablation procedure. These included three cases of intraoperative thrombosis, three instances of pericardial effusion or tamponade, one case of device-related thrombosis, one peri-device leak, one systemic embolism, one bleeding episode, and one additional device-related complication. The categorization of intraoperative thrombosis was as follows: one patient exhibited heparin resistance; one experienced thrombosis due to prolonged device implantation during the LAAC with ablation procedure; and one had unexplained intraoperative thrombosis. The pericardial effusion or tamponade likely resulted from damage to the atrial appendage during LAAC device insertion. Two patients encountered device-related thrombosis and systemic embolism events possibly caused by non-standard postoperative antithrombotic medication use; one patient's peri-device leak may have resulted from incomplete endothelialization of the occluder post-surgery; one patient experienced postoperative bladder bleeding; and one patient's device-related complications occurred due to a dislodged strut frame that damaged the left atrial appendage, leading to pericardial effusion. Our proactive interventions enabled all patients with these surgical-related complications to be safely discharged, with subsequent follow-ups showing no adverse events. Conclusion: Implementing targeted interventions for immediate procedural-related complications during the LAAC with or without ablation procedures enhances procedural success rates, diminishes postoperative mortality and patient disability, and bolsters stroke prevention efforts. This approach underscores the importance of a strategic response to complications, affirming the procedure's viability and safety in managing non-valvular AF in patients contraindicated for anticoagulation.

18.
Int J Dermatol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090834

RESUMO

Subcutaneous granuloma annulare (SGA) is a rare clinicopathologic subtype of granuloma annulare characterized by the presence of subcutaneous nodules. There are no present reviews synthesizing the clinical features and treatment modalities in SGA. We conducted a systematic review following PRISMA guidelines [CRD42022344672] on all peer-reviewed English-language studies that reported one or more cases of SGA. A total of 97 studies, comprising 26 case series and 71 case reports with 324 patients, were included for analysis. Most cases were predominantly pediatric, with 78.9% of the cases identified being age 16 or lower and a median age of diagnosis of 6. There was no overall gender predisposition. Although over two-thirds of patients did not have any comorbidities, diabetes mellitus was the most common comorbidity present in 4% of cases. The most common feature of SGA was nodules, which were present in 99.6% of patients. Pain or tenderness was reported in 15.4%, and erythema of overlying skin in 11.0% of cases. Surgical excision was performed in 96/141 (68.1%) patients. Among the 27/141 (18.0%) patients who were conservatively managed, 87.0% spontaneously improved, including 60.0% who completely self-resolved. Topical and intralesional steroids were used in 3.40% and 1.85% of patients, respectively, resulting in complete or partial resolution in 54.6% and 100%. Among patients who were followed up, 83/324 (25.6%) patients experienced recurrence after a median duration of 26 weeks. SGA is predominantly a pediatric disease that frequently occurs on the limbs and the head. Juxta-articular lesions are more commonly observed in adults than in children. Surgical excision is common and effective in most patients. Spontaneous improvement occurs in most untreated cases, and intralesional steroids but not topical steroids may be beneficial for non-resolving cases and to reduce time to resolution.

20.
Drug Des Devel Ther ; 18: 3549-3594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139676

RESUMO

A multidrug combination strategy is an important mean to improve the treatment of cancer and is the mainstream scheme of clinical cancer treatment. The active ingredients of traditional Chinese medicine, represented by toad skin and toad venom, have the advantages of high efficiency, low toxicity, wide action and multiple targets and have become ideal targets in combined treatment strategies for tumors in recent years. Toad skin and toad venom are traditional Chinese animal medicines derived from Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider that have shown excellent therapeutic effects on the treatment of various cancers and cancer pain as adjuvant antitumor drugs in clinical practice. The involved mechanisms include inducing apoptosis, arresting the cell cycle, inhibiting cell proliferation, migration and invasion, inhibiting tumor angiogenesis, reversing the multidrug resistance of tumor cells, and regulating multiple signaling pathways and targets. Moreover, a multidrug combination strategy based on a nanodelivery system can realize the precise loading of the active ingredients of toad skin or toad venom and other antitumor drugs and carry drugs to overcome physiological and pathological barriers, complete efficient enrichment in tumor tissues, and achieve targeted delivery to tumor cells and the controlled release of drugs, thus enhancing antitumor efficacy and reducing toxicity and side effects. This article reviewed the clinical efficacy and safety of the combination of toad skin and toad venom with chemotherapeutic drugs, targeted drugs, analgesics and other drugs; evaluated the effects and mechanisms of the combination of toad skin and toad venom with chemotherapy, targeted therapy, radiotherapy or hyperthermia, traditional Chinese medicine, signaling pathway inhibitors and other therapies in cell and animal models; and summarized the codelivery strategies for the active ingredients of toad skin and toad venom with chemotherapeutic drugs, small-molecule targeted drugs, monoclonal antibodies, active ingredients of traditional Chinese medicine, and photodynamic and photothermal therapeutic drugs to provide a basis for the rational drug use of toad skin and toad venom in the clinic and the development of novel drug delivery systems.


Assuntos
Venenos de Anfíbios , Pele , Animais , Humanos , Venenos de Anfíbios/química , Venenos de Anfíbios/farmacologia , Pele/efeitos dos fármacos , Medicina Tradicional Chinesa , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Bufonidae , Proliferação de Células/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA