Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 17883, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784628

RESUMO

We present experimental results on the characteristic sharing of available excess energy, ranging from 11-221 eV, between two electrons in single-photon direct double ionization of He. An effective parametrization of the sharing distributions is presented along with an empirical model that describes the complete shape of the distribution based on a single experimentally determinable parameter. The measured total energy sharing distributions are separated into two distributions representing the shake-off and knock-out parts by simulating the sharing distribution curves expected from a pure wave collapse after a sudden removal of the primary electron. In this way, empirical knock-out distributions are extracted and both the shake-off and knock-out distributions are parametrized. These results suggest a simple method that can be applied to other atomic and molecular systems to experimentally study important aspects of the direct double ionization process.

2.
Phys Chem Chem Phys ; 21(3): 1587-1596, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30620033

RESUMO

The radiative cooling of highly excited carbon cluster cations of sizes N = 8, 10, 13-16 has been studied in an electrostatic storage ring. The cooling rate constants vary with cluster size from a maximum at N = 8 of 2.6 × 104 s-1 and a minimum at N = 13 of 4.4 × 103 s-1. The high rates indicate that photon emission takes place from electronically excited ions, providing a strong stabilizing cooling of the molecules.

3.
Nat Commun ; 9(1): 63, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302026

RESUMO

The first steps in photochemical processes, such as photosynthesis or animal vision, involve changes in electronic and geometric structure on extremely short time scales. Time-resolved photoelectron spectroscopy is a natural way to measure such changes, but has been hindered hitherto by limitations of available pulsed light sources in the vacuum-ultraviolet and soft X-ray spectral region, which have insufficient resolution in time and energy simultaneously. The unique combination of intensity, energy resolution, and femtosecond pulse duration of the FERMI-seeded free-electron laser can now provide exceptionally detailed information on photoexcitation-deexcitation and fragmentation in pump-probe experiments on the 50-femtosecond time scale. For the prototypical system acetylacetone we report here electron spectra measured as a function of time delay with enough spectral and time resolution to follow several photoexcited species through well-characterized individual steps, interpreted using state-of-the-art static and dynamics calculations. These results open the way for investigations of photochemical processes in unprecedented detail.

4.
Nat Commun ; 8: 15461, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28580940

RESUMO

Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.

5.
Phys Chem Chem Phys ; 18(4): 2535-47, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26700657

RESUMO

Core-valence double ionisation spectra of acetaldehyde (ethanal) are presented at photon energies above the carbon and oxygen 1s ionisation edges, measured by a versatile multi-electron coincidence spectroscopy technique. We use this molecule as a testbed for analyzing core-valence spectra by means of quantum chemical calculations of transition energies. These theoretical approaches range from two simple models, one based on orbital energies corrected by core valence interaction and one based on the equivalent core approximation, to a systematic series of quantum chemical electronic structure methods of increasing sophistication. The two simple models are found to provide a fast orbital interpretation of the spectra, in particular in the low energy parts, while the coverage of the full spectrum is best fulfilled by correlated models. CASPT2 is the most sophisticated model applied, but considering precision as well as computational costs, the single and double excitation configuration interaction model seems to provide the best option to analyze core-valence double hole spectra.

6.
Nat Commun ; 5: 4281, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24969734

RESUMO

Understanding molecular femtosecond dynamics under intense X-ray exposure is critical to progress in biomolecular imaging and matter under extreme conditions. Imaging viruses and proteins at an atomic spatial scale and on the time scale of atomic motion requires rigorous, quantitative understanding of dynamical effects of intense X-ray exposure. Here we present an experimental and theoretical study of C60 molecules interacting with intense X-ray pulses from a free-electron laser, revealing the influence of processes not previously reported. Our work illustrates the successful use of classical mechanics to describe all moving particles in C60, an approach that scales well to larger systems, for example, biomolecules. Comparisons of the model with experimental data on C60 ion fragmentation show excellent agreement under a variety of laser conditions. The results indicate that this modelling is applicable for X-ray interactions with any extended system, even at higher X-ray dose rates expected with future light sources.


Assuntos
Fulerenos , Simulação de Dinâmica Molecular , Raios X , Explosões , Lasers
7.
J Chem Phys ; 140(4): 044309, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25669525

RESUMO

Single-site N1s and O1s double core ionisation of the NO and N2O molecules has been studied using a magnetic bottle many-electron coincidence time-of-flight spectrometer at photon energies of 1100 eV and 1300 eV. The double core hole energies obtained for NO are 904.8 eV (N1s(-2)) and 1179.4 eV (O1s(-2)). The corresponding energies obtained for N2O are 896.9 eV (terminal N1s(-2)), 906.5 eV (central N1s(-2)), and 1174.1 eV (O1s(-2)). The ratio between the double and single ionisation energies are in all cases close or equal to 2.20. Large chemical shifts are observed in some cases which suggest that reorganisation of the electrons upon the double ionization is significant. Δ-self-consistent field and complete active space self-consistent field (CASSCF) calculations were performed for both molecules and they are in good agreement with these results. Auger spectra of N2O, associated with the decay of the terminal and central N1s(-2) as well as with the O1s(-2) dicationic states, were extracted showing the two electrons emitted as a result of filling the double core holes. The spectra, which are interpreted using CASSCF and complete active space configuration interaction calculations, show atomic-like character. The cross section ratio between double and single core hole creation was estimated as 1.6 × 10(-3) for nitrogen at 1100 eV and as 1.3 × 10(-3) for oxygen at 1300 eV.

8.
Phys Rev Lett ; 111(7): 073002, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23992061

RESUMO

When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called "partial covariance mapping" to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.

9.
J Phys Chem A ; 114(14): 4843-6, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20148540

RESUMO

Dissociative recombination of the Zundel cation D(5)O(2)(+) almost exclusively produces D + 2 D(2)O with a maximum kinetic energy release of 5.1 eV. An imaging technique is used to investigate the distribution of the available reaction energy among these products. Analysis shows that as much as 4 eV can be stored internally by the molecular fragments, with a preference for producing highly excited molecular fragments, and that the deuteron shows a nonrandom distribution of kinetic energies. A possible mechanism and the implications for these observations are addressed.

10.
J Chem Phys ; 128(13): 134308, 2008 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-18397065

RESUMO

The dissociative recombination of OPCl+ and OPCl2+ has been studied at the storage ring CRYRING. The rate constants as a function of electron temperature have been derived to be 7.63 x 10(-7)(Te/300)(-0.89) and >1.2 x 10(-6)(Te/300)(-1.22) cm3s(-1), respectively. The lower limit quoted for the latter rate constant reflects the experimental inability to detect all of the reaction products. The branching fractions from the reaction have been measured for OPCl+ at approximately 0 eV interaction energy and are determined to be N(O+P+Cl)=(16+/-7)%, N(O+PCl)=(16+/-3)% and N(OP+Cl)=(68+/-5)%. These values have been obtained assuming that the rearrangement channel forming P+ClO is negligible, and ab initio calculations using GAUSSIAN03 are presented for the ion structures and energetics to support such an assumption. Finally, the limitations to using heavy ion storage rings such as CRYRING for studies into the dissociative recombination of large singly charged molecular ions are discussed.


Assuntos
Cloro/química , Modelos Químicos , Modelos Moleculares , Aceleradores de Partículas , Compostos de Fósforo/química , Simulação por Computador
11.
Phys Rev Lett ; 98(22): 223201, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17677840

RESUMO

We report the first observation of almost exclusive three-body breakup in the dissociative recombination of a covalent triatomic molecular ion O3+. The three-body channel, constituting about 94% of the total reactivity, has been investigated in detail. The atomic fragments are formed in only the first two electronic states, 3P and 1D, while formation in the 1S state has not been observed. The breakup predominantly proceeds through dissociative states with linear geometry.

12.
Phys Rev Lett ; 99(1): 013201, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17678152

RESUMO

We have studied the dissociative recombination (DR) of molecular hydrogen ions with slow electrons over a range of collision energies from 0 to 400 meV. By employing a pulsed expansion source for rotational cooling and by exploiting super elastic collisions with near-0-eV electrons in a heavy ion storage ring for vibrational cooling, we observe a highly structured DR cross section, comparable to that reported for HD+. Using para-hydrogen-enriched ion beams, we identify for the first time features in the DR cross sections attributed to nu=0, J=even molecules (para-H2) and nu=0, J=odd (ortho-H2) molecules, separately. Indications are given that para levels have different DR rate coefficients from ortho levels for the first four vibrational levels at near-0-eV collisions.

13.
J Chem Phys ; 127(1): 014305, 2007 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-17627344

RESUMO

We report an investigation into the dissociative recombination of the azide radical cation, N(3) (+). The reaction rate constant has been measured to be 6.47 x 10(-7) cm(3) s(-1) at room temperature. This value is smaller than those reported earlier for the ion-electron neutralization of N(3) (+) at nitrogen atmospheric pressure. A strong propensity to dissociate through the N(2)+N channel has been observed.

14.
Faraday Discuss ; 133: 177-90; discussion 191-230, 449-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17191449

RESUMO

The branching ratios of the different reaction pathways and the overall rate coefficients of the dissociative recombination reactions of CH3OH2+ and CD3OD2+ have been measured at the CRYRING storage ring located in Stockholm, Sweden. Analysis of the data yielded the result that formation of methanol or deuterated methanol accounted for only 3 and 6% of the total rate in CH3OH2+ and CD3OD2+, respectively. Dissociative recombination of both isotopomeres mainly involves fragmentation of the C-O bond, the major process being the three-body break-up forming CH3, OH and H (CD3, OD and D). The overall cross sections are best fitted by sigma = 1.2 +/- 0.1 x 10(-15) E(-1.15 +/- 0.02) cm2 and sigma = 9.6 +/- 0.9 x 10(-16) E(-1.20 +/- 0.02) cm2 for CH3OH2+ and CD3OD2+, respectively. From these values thermal reaction rate coefficients of k(T) = 8.9 +/- 0.9 x 10(-7) (T/300)(-0.59 +/- 0.02) cm3 s(-1) (CH3OH2+) and k(T) = 9.1 +/- 0.9 x 10(-7) (T/300)(-0.63 +/- 0.02) cm3 s(-1) (CD3OD2+) can be calculated. A non-negligible formation of interstellar methanol by the previously proposed mechanism via radiative association of CH3+ and H2O and subsequent dissociative recombination of the resulting CH3OH2+ ion to yield methanol and hydrogen atoms is therefore very unlikely.

16.
Phys Chem Chem Phys ; 7(8): 1664-8, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19787922

RESUMO

We have investigated the dissociative recombination of the N2O+ ion using the CRYRING heavy-ion storage ring at the Manne Siegbahn laboratory in Stockholm, Sweden. The dissociative recombination branching ratios were determined at minimal (approximately 0 eV) collision energy, showing that the dominating pathways involved two-body fragmentation: N2 + O (48%) and NO + N (36%). The branching ratio of the three-body break-up 2N + O was 16%. The overall thermal rate coefficient of the title reaction follows the expression k(T) = 3.34 +/- 0.75 x 10(-7) (T/300) (-0.57+/- 0.03 cm3 s(-1)), which correlates perfectly with earlier flowing afterglow studies on the same process.


Assuntos
Óxido Nitroso/química , Cinética , Termodinâmica
17.
J Chem Phys ; 121(12): 5700-8, 2004 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-15366993

RESUMO

Dimethyl disulfide (DMDS) and N-methylacetamide are two first choice model systems that represent the disulfide bridge bonding and the peptide bonding in proteins. These molecules are therefore suitable for investigation of the mechanisms involved when proteins fragment under electron capture dissociation (ECD). The dissociative recombination cross sections for both protonated DMDS and protonated N-methylacetamide were determined at electron energies ranging from 0.001 to 0.3 eV. Also, the branching ratios at 0 eV center-of-mass collision energy were determined. The present results give support for the indirect mechanism of ECD, where free hydrogen atoms produced in the initial fragmentation step induce further decomposition. We suggest that both indirect and direct dissociations play a role in ECD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...