Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Huazhong Univ Sci Technolog Med Sci ; 37(6): 886-890, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29270748

RESUMO

Emerging evidence has indicated that circular RNAs (circRNAs) play pivotal roles in the regulation of cellular processes and are found to be aberrantly expressed in a variety of tumors. However, the clinical role of circRNAs in bladder cancer (BC) and the molecular mechanisms have yet to be fully understood. In this study, the clinical specimens were obtained and the expression level of a circRNA BCRC4 was detected by real-time PCR in both BC tissues and cell line. The circular RNA over-expression plasmid was constructed and transfected into BC cells and related cell line. The cell cycles and apoptosis were observed using inverted microscope and flow cytometry. Western blotting was used to compare the relative protein expression of groups with different treatments. It was found that circRNA BCRC4 expression was lower in BC tissues than in adjacent normal tissues. Furthermore, consequences of forced-expression of BCRC4 promoted apoptosis and inhibited viability of T24T and UMUC3 cells, and up-regulated BCRC4-increased miR-101 level, which suppressed EZH2 expression in both RNA and protein levels. In addition, gambogic acid (GA) is a promising natural anticancer compound for BC therapy, and GA treatment increased the BCRC4 expression in T24T and UMUC3 cells in a dose-dependent manner. Altogether, our findings suggest that BCRC4 functions as a tumor suppressor in BC, and mediates anticancer function, at least in part, by up-regulating the expression of miR-101. Targeting this newly identified circRNA may help us develop a novel strategy for treating human BC.


Assuntos
Apoptose/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Neoplásico/genética , RNA/genética , Neoplasias da Bexiga Urinária/genética , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , MicroRNAs/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , RNA/agonistas , RNA/metabolismo , RNA Circular , RNA Neoplásico/metabolismo , Estudos Retrospectivos , Transdução de Sinais , Transfecção , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Xantonas/farmacologia
2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-333409

RESUMO

Emerging evidence has indicated that circular RNAs (circRNAs) play pivotal roles in the regulation of cellular processes and are found to be aberrantly expressed in a variety of tumors.However,the clinical role of circRNAs in bladder cancer (BC) and the molecular mechanisms have yet to be fully understood.In this study,the clinical specimens were obtained and the expression level of a circRNA BCRC4 was detected by real-time PCR in both BC tissues and cell line.The circular RNA over-expression plasmid was constructed and transfected into BC cells and related cell line.The cell cycles and apoptosis were observed using inverted microscope and flow cytometry.Western blotting was used to compare the relative protein expression of groups with different treatments.It was found that circRNA BCRC4 expression was lower in BC tissues than in adjacent normal tissues.Furthermore,consequences of fomed-expression of BCRC4 promoted apoptosis and inhibited viability of T24T and UMUC3 cells,and up-regulated BCRC4-inereased miR-101 level,which suppressed EZH2 expression in both RNA and protein levels.In addition,gambogic acid (GA) is a promising natural anticancer compound for BC therapy,and GA treatment increased the BCRC4 expression in T24T and UMUC3 cells in a dose-dependent manner.Altogether,our findings suggest that BCRC4 functions as a tumor suppressor in BC,and mediates anticancer function,at least in part,by up-regulating the expression of miR-101.Targeting this newly identified circRNA may help us develop a novel strategy for treating human BC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...