Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 14(1): 662-683, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223048

RESUMO

Background: Whether white matter hyperintensities (WMHs) involve U-fibers is of great value in understanding the different etiologies of cerebral white matter (WM) lesions. However, clinical practice currently relies only on the naked eye to determine whether WMHs are in the vicinity of U-fibers, and there is a lack of good neuroimaging tools to quantify WMHs and U-fibers. Methods: Here, we developed a multimodal neuroimaging toolbox named U-fiber analysis (UFA) that can automatically extract WMHs and quantitatively characterize the volume and number of WMHs in different brain regions. In addition, we proposed an anatomically constrained U-fiber tracking scheme and quantitatively characterized the microstructure diffusion properties, fiber length, and number of U-fibers in different brain regions to help clinicians to quantitatively determine whether WMHs in the proximal cortex disrupt the microstructure of U-fibers. To validate the utility of the UFA toolbox, we analyzed the neuroimaging data from 246 patients with cerebral small vessel disease (cSVD) enrolled at Zhongshan Hospital between March 2018 and November 2019 in a cross-sectional study. Results: According to the manual judgment of the clinician, the patients with cSVD were divided into a WMHs involved U-fiber group (U-fiber-involved group, 51 cases) and WMHs not involved U-fiber group (U-fiber-spared group, 163 cases). There were no significant differences between the U-fiber-spared group and the U-fiber-involved group in terms of age (P=0.143), gender (P=0.462), education (P=0.151), Mini-Mental State Examination (MMSE) scores (P=0.151), and Montreal Cognitive Assessment (MoCA) scores (P=0.411). However, patients in the U-fiber-involved group had higher Fazekas scores (P<0.001) and significantly higher whole brain WMHs (P=0.046) and deep WMH volumes (P<0.001) compared to patients in the U-fiber-spared group. Moreover, the U-fiber-involved group had higher WMH volumes in the bilateral frontal [P(left) <0.001, P(right) <0.001] and parietal lobes [P(left) <0.001, P(right) <0.001]. On the other hand, patients in the U-fiber-involved group had higher mean diffusivity (MD) and axial diffusivity (AD) in the bilateral parietal [P(left, MD) =0.048, P(right, MD) =0.045, P(left, AD) =0.015, P(right, AD) =0.015] and right frontal-parietal regions [P(MD) =0.048, P(AD) =0.027], and had significantly reduced mean fiber length and number in the right parietal [P(length) =0.013, P(number) =0.028] and right frontal-parietal regions [P(length) =0.048] compared to patients in the U-fiber-spared group. Conclusions: Our results suggest that WMHs in the proximal cortex may disrupt the microstructure of U-fibers. Our tool may provide new insights into the understanding of WM lesions of different etiologies in the brain.

2.
Front Neurol ; 13: 855842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530607

RESUMO

Objectives: To find the brain network indicators correlated with the seizure severity in temporal lobe epilepsy (TLE) by graph theory analysis. Methods: We enrolled 151 patients with TLE and 36 age- and sex-matched controls with video-EEG monitoring. The 90-s interictal EEG data were acquired. We adopted a network analyzing pipeline based on graph theory to quantify and localize their functional networks, including weighted classical network, minimum spanning tree, community structure, and LORETA. The seizure severities were evaluated using the seizure frequency, drug-resistant epilepsy (DRE), and VA-2 scores. Results: Our network analysis pipeline showed ipsilateral frontotemporal activation in patients with TLE. The frontotemporal phase lag index (PLI) values increased in the theta band (4-7 Hz), which were elevated in patients with higher seizure severities (P < 0.05). Multivariate linear regression analysis showed that the VA-2 scores were independently correlated with frontotemporal PLI values in the theta band (ß = 0.259, P = 0.001) and age of onset (ß = -0.215, P = 0.007). Significance: This study illustrated that the frontotemporal PLI in the theta band independently correlated with seizure severity in patients with TLE. Our network analysis provided an accessible approach to guide the treatment strategy in routine clinical practice.

3.
Cogn Neurodyn ; 15(5): 861-872, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34603547

RESUMO

Moyamoya disease (MMD) is a cerebrovascular disease that is characterized by progressive stenosis or occlusion of the internal carotid arteries and its main branches, which leads to the formation of abnormal small collateral vessels. However, little is known about how these special vascular structures affect cortical network connectivity and brain function. By applying EEG analysis and graphic network analyses undergoing EEG recording of subjects with eyes-closed (EC) and eyes-open (EO) resting states, and working memory (WM) tasks, we examined the brain network features of hemorrhagic (HMMD) and ischemic MMD (IMMD) brains. For the first time, we observed that IMMD had the much lower alpha-blocking rate during EO state than healthy controls while HMMD exhibited the relatively low EEG activity rate across all the behavior states. Further, IMMD showed strong network connections in the alpha-wave band in frontal and parietal regions during EO and WM states. EEG frequency and network topological maps during both resting and WM states indicated that the left frontal lobe and left parietal lobe in HMMD patients and the right parietal lobe and temporal lobe in IMMD patients have clear differences compared with controls, which provides a new insight to understand distinct electrophysiological features of MMD. However, due to the small sample size of recruited patient subjects, the result conclusion may be limited. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s11571-021-09666-1).

4.
Oxid Med Cell Longev ; 2021: 6640108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953833

RESUMO

Criticality is considered a dynamic signature of healthy brain activity that can be measured on the short-term timescale with neural avalanches and long-term timescale with long-range temporal correlation (LRTC). It is unclear how the brain dynamics change in adult moyamoya disease (MMD). We used BOLD-fMRI for LRTC analysis from 16 hemorrhagic (H MMD) and 34 ischemic (I MMD) patients and 25 healthy controls. Afterwards, they were examined by EEG recordings in the eyes-closed (EC), eyes-open (EO), and working memory (WM) states. The EEG data of 11 H MMD and 13 I MMD patients and 21 healthy controls were in good quality for analysis. Regarding the 4 metrics of neural avalanches (e.g., size (α), duration (ß), κ value, and branching parameter (σ)), both MMD subtypes exhibited subcritical states in the EC state. When switching to the WM state, H MMD remained inactive, while I MMD surpassed controls and became supercritical (p < 0.05). Regarding LRTC, the amplitude envelope in the EC state was more analogous to random noise in the MMD patients than in controls. During state transitions, LRTC decreased sharply in the controls but remained chaotic in the MMD individuals (p < 0.05). The spatial LRTC reduction distribution based on both EEG and fMRI in the EC state implied that, compared with controls, the two MMD subtypes might exhibit mutually independent but partially overlapping patterns. The regions showing decreased LRTC in both EEG and fMRI were the left supplemental motor area of H MMD and right pre-/postcentral gyrus and right inferior temporal gyrus of I MMD. This study not only sheds light on the decayed critical dynamics of MMD in both the resting and task states for the first time but also proposes several EEG and fMRI features to identify its two subtypes.


Assuntos
Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Doença de Moyamoya/diagnóstico por imagem , Adulto , Feminino , Humanos , Masculino
5.
Phenomics ; 1(6): 285-298, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36939768

RESUMO

Mathematical calculation usually requires sustained attention to manipulate numbers in the mind, while listening to light music has a relaxing effect on the brain. The differences in the corresponding brain functional network topologies underlying these behaviors remain rarely known. Here, we systematically examined the brain dynamics of four behaviors (resting with eyes closed and eyes open, tasks of music listening and mental calculation) using 64-channel electroencephalogram (EEG) recordings and graph theory analysis. We developed static and dynamic minimum spanning tree (MST) analysis method and demonstrated that the brain network topology under mental calculation is a more line-like structure with less tree hierarchy and leaf fraction; however, the hub regions, which are mainly located in the frontal, temporal and parietal regions, grow more stable over time. In contrast, music-listening drives the brain to exhibit a highly rich network of star structure, and the hub regions are mainly located in the posterior regions. We then adopted the dynamic dissimilarity of different MSTs over time based on the graph Laplacian and revealed low dissimilarity during mental calculation. These results suggest that the human brain functional connectivity of individuals has unique dynamic diversity and flexibility under various behaviors. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-021-00027-w.

6.
Front Neurosci ; 12: 158, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593490

RESUMO

The choice of different reference electrodes plays an important role in deciphering the functional meaning of electroencephalography (EEG) signals. In recent years, the infinity zero reference using the reference electrode standard technique (REST) has been increasingly applied, while the average reference (AR) was generally advocated as the best available reference option in previous classical EEG studies. Here, we designed EEG experiments and performed a direct comparison between the influences of REST and AR on EEG-revealed brain activity features for three typical brain behavior states (eyes-closed, eyes-open and music-listening). The analysis results revealed the following observations: (1) there is no significant difference in the alpha-wave-blocking effect during the eyes-open state compared with the eyes-closed state for both REST and AR references; (2) there was clear frontal EEG asymmetry during the resting state, and the degree of lateralization under REST was higher than that under AR; (3) the global brain functional connectivity density (FCD) and local FCD have higher values for REST than for AR under different behavior states; and (4) the value of the small-world network characteristic in the eyes-closed state is significantly (in full, alpha, beta and gamma frequency bands) higher than that in the eyes-open state, and the small-world effect under the REST reference is higher than that under AR. In addition, the music-listening state has a higher small-world network effect than the eyes-closed state. The above results suggest that typical EEG features might be more clearly presented by applying the REST reference than by applying AR when using a 64-channel recording.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...