Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(11): 105347, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838171

RESUMO

The pseudorabies virus (PRV) TJ strain, a variant of PRV, induces more severe neurological symptoms and higher mortality in piglets and mice than the PRV SC strain isolated in 1980. However, the mechanism underlying responsible for the discrepancy in virulence between these strains remains unclear. Our study investigated the differences in neurotropism between PRV TJ and PRV SC using both in vitro and in vivo models. We discovered that PRV TJ enters neural cells more efficiently than PRV SC. Furthermore, we found that PRV TJ has indistinguishable genomic DNA replication capability and axonal retrograde transport dynamics compared to the PRV SC. To gain deeper insights into the mechanisms underlying these differences, we constructed gene-interchanged chimeric virus constructs and assessed the affinity between envelope glycoprotein B, C, and D (gD) and corresponding receptors. Our findings confirmed that mutations in these envelope proteins, particularly gD, significantly contributed to the heightened attachment and penetration capabilities of PRV TJ. Our study revealed the critical importance of the gDΔR278/P279 and gDV338A in facilitating viral invasion. Furthermore, our observations indicated that mutations in envelope proteins have a more significant impact on viral invasion than on virulence in the mouse model. Our findings provide valuable insights into the roles of natural mutations on the PRV envelope glycoproteins in cell tropism, which sheds light on the relationship between cell tropism and clinical symptoms and offers clues about viral evolution.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Proteínas do Envelope Viral , Tropismo Viral , Animais , Camundongos , Genômica , Herpesvirus Suídeo 1/genética , Mutagênese , Mutação , Pseudorraiva/genética , Suínos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
2.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31413123

RESUMO

In the host, many RING domain E3 ligases have been reported to inhibit viral replication through various mechanisms. In a previous screen, we found that porcine RING finger protein 114 (pRNF114), a RING domain E3 ubiquitin ligase, inhibits classical swine fever virus (CSFV) replication. This study aimed to clarify the underlying antiviral mechanism of pRNF114 against CSFV. Upon CSFV infection, pRNF114 mRNA was upregulated both in vitro and in vivo CSFV replication was significantly suppressed in PK-pRNF114 cells stably expressing pRNF114 by the lentivirus-delivered system, whereas CSFV growth was enhanced in PK-15 cells with RNF114 knockout by the CRISPR/Cas9 system. The RING domain of pRNF114, which has E3 ubiquitin ligase activity, is crucial for its antiviral activity. Mechanistically, pRNF114 interacted with the CSFV NS4B protein through their C-terminal domains, which led to the K27-linked polyubiquitination and degradation of NS4B through a proteasome-dependent pathway. Collectively, these findings indicate that pRNF114 as a critical regulator of CSFV replication and uncover a mechanism by which pRNF114 employs its E3 ubiquitin ligase activity to inhibit CSFV replication.IMPORTANCE Porcine RING finger protein 114 (pRNF114) is a member of the RING domain E3 ligases. In this study, it was shown that pRNF114 is a potential anti-CSFV factor and the anti-CSFV effect of pRNF114 depends on its E3 ligase activity. Notably, pRNF114 targets and catalyzes the K27-linked polyubiquitination of the NS4B protein and then promotes proteasome-dependent degradation of NS4B, inhibiting the replication of CSFV. To our knowledge, pRNF114 is the first E3 ligase to be identified as being involved in anti-CSFV activity, and targeting NS4B could be a crucial route for antiviral development.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/prevenção & controle , Lisina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Células HEK293 , Humanos , Lisina/genética , Suínos , Ubiquitina-Proteína Ligases/genética , Proteínas não Estruturais Virais/genética
3.
J Gen Virol ; 100(2): 156-165, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30484759

RESUMO

Classical swine fever virus (CSFV), the etiological agent of classical swine fever in pigs, is a member of the Pestivirus genus within the Flaviviridae family. It has been proposed that CSFV infection is significantly inhibited by methyl-ß-cyclodextrin (MßCD) treatment. However, the exact engagement of cellular cholesterol in the life cycle of CSFV remains unclear. Here, we demonstrated that pretreatment of PK-15 cells with MßCD significantly decreased the cellular cholesterol level and resulted in the inhibition of CSFV infection, while replenishment of exogenous cholesterol in MßCD-treated cells recovered the cellular cholesterol level and restored the viral infection. Moreover, we found that depletion of cholesterol acted on the early stage of CSFV infection and blocked its internalization into the host cells. Furthermore, we showed that 25-hydroxycholesterol, a regulator of cellular cholesterol biosynthesis, exhibited a potent anti-CSFV activity by reducing cellular cholesterol level. Taken together, our findings highlight the engagement of cholesterol in the life cycle of CSFV and its potential use as an antiviral target.


Assuntos
Colesterol/metabolismo , Vírus da Febre Suína Clássica/crescimento & desenvolvimento , Internalização do Vírus , Animais , Antivirais/farmacologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Hidroxicolesteróis/farmacologia , Suínos , beta-Ciclodextrinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...