Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4912, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851738

RESUMO

Bacterial adhesion is a fundamental process which enables colonisation of niche environments and is key for infection. However, in Legionella pneumophila, the causative agent of Legionnaires' disease, these processes are not well understood. The Legionella collagen-like protein (Lcl) is an extracellular peripheral membrane protein that recognises sulphated glycosaminoglycans on the surface of eukaryotic cells, but also stimulates bacterial aggregation in response to divalent cations. Here we report the crystal structure of the Lcl C-terminal domain (Lcl-CTD) and present a model for intact Lcl. Our data reveal that Lcl-CTD forms an unusual trimer arrangement with a positively charged external surface and negatively charged solvent exposed internal cavity. Through molecular dynamics simulations, we show how the glycosaminoglycan chondroitin-4-sulphate associates with the Lcl-CTD surface via distinct binding modes. Our findings show that Lcl homologs are present across both the Pseudomonadota and Fibrobacterota-Chlorobiota-Bacteroidota phyla and suggest that Lcl may represent a versatile carbohydrate-binding mechanism.


Assuntos
Proteínas de Bactérias , Colágeno , Glicosaminoglicanos , Legionella pneumophila , Simulação de Dinâmica Molecular , Ligação Proteica , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Legionella pneumophila/metabolismo , Colágeno/metabolismo , Colágeno/química , Cristalografia por Raios X , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/química , Aderência Bacteriana , Domínios Proteicos , Doença dos Legionários/microbiologia , Doença dos Legionários/metabolismo , Humanos , Sequência de Aminoácidos
2.
bioRxiv ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38106198

RESUMO

Bacterial adhesion is a fundamental process which enables colonisation of niche environments and is key for infection. However, in Legionella pneumophila, the causative agent of Legionnaires' disease, these processes are not well understood. The Legionella collagen-like protein (Lcl) is an extracellular peripheral membrane protein that recognises sulphated glycosaminoglycans (GAGs) on the surface of eukaryotic cells, but also stimulates bacterial aggregation in response to divalent cations. Here we report the crystal structure of the Lcl C-terminal domain (Lcl-CTD) and present a model for intact Lcl. Our data reveal that Lcl-CTD forms an unusual dynamic trimer arrangement with a positively charged external surface and a negatively charged solvent exposed internal cavity. Through Molecular Dynamics (MD) simulations, we show how the GAG chondroitin-4-sulphate associates with the Lcl-CTD surface via unique binding modes. Our findings show that Lcl homologs are present across both the Pseudomonadota and Fibrobacterota-Chlorobiota-Bacteroidota phyla and suggest that Lcl may represent a versatile carbohydrate binding mechanism.

3.
Gut Microbes ; 15(2): 2251646, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655448

RESUMO

Inflammatory bowel disease (IBD) represents a prominent chronic immune-mediated inflammatory disorder, yet its etiology remains poorly comprehended, encompassing intricate interactions between genetics, immunity, and the gut microbiome. This study uncovers a novel colitis-associated risk gene, namely Ring1a, which regulates the mucosal immune response and intestinal microbiota. Ring1a deficiency exacerbates colitis by impairing the immune system. Concomitantly, Ring1a deficiency led to a Prevotella genus-dominated pathogenic microenvironment, which can be horizontally transmitted to co-housed wild type (WT) mice, consequently intensifying dextran sodium sulfate (DSS)-induced colitis. Furthermore, we identified a potential mechanism linking the altered microbiota in Ring1aKO mice to decreased levels of IgA, and we demonstrated that metronidazole administration could ameliorate colitis progression in Ring1aKO mice, likely by reducing the abundance of the Prevotella genus. We also elucidated the immune landscape of DSS colitis and revealed the disruption of intestinal immune homeostasis associated with Ring1a deficiency. Collectively, these findings highlight Ring1a as a prospective candidate risk gene for colitis and suggest metronidazole as a potential therapeutic option for clinically managing Prevotella genus-dominated colitis.


We found that PcG protein Ring1a could be a new risk gene for colitis. Ring1a deficiency causes aggravated colitis by regulating the mucosal immune system and colonic microbial ecology.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Camundongos , Colite/genética , Colite/microbiologia , Sistema Imunitário , Metronidazol/farmacologia , Prevotella/genética
4.
Biosci Rep ; 40(9)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32815531

RESUMO

Colorectal cancer (CRC) has been one of the most common malignancies worldwide, which tends to get worse for the growth and aging of the population and westernized lifestyle. However, there is no effective treatment due to the complexity of its etiology. Hence, the pathogenic mechanisms remain to be clearly defined. In the present study, we adopted an advanced analytical method-Weighted Gene Co-expression Network Analysis (WGCNA) to identify the key gene modules and hub genes associated with CRC. In total, five gene co-expression modules were highly associated with CRC, of which, one gene module correlated with CRC significantly positive (R = 0.88). Functional enrichment analysis of genes in primary gene module found metabolic pathways, which might be a potentially important pathway involved in CRC. Further, we identified and verified some hub genes positively correlated with CRC by using Cytoscape software and UALCAN databases, including PAICS, ATR, AASDHPPT, DDX18, NUP107 and TOMM6. The present study discovered key gene modules and hub genes associated with CRC, which provide references to understand the pathogenesis of CRC and may be novel candidate target genes of CRC.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Biologia Computacional/métodos , Bases de Dados Genéticas , Ontologia Genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
5.
Nat Microbiol ; 5(4): 651, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32076134

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Microbiol ; 4(12): 2101-2108, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31754273

RESUMO

The type II secretion system (T2SS) is a multiprotein envelope-spanning assembly that translocates a wide range of virulence factors, enzymes and effectors through the outer membrane of many Gram-negative bacteria1-3. Here, using electron cryotomography and subtomogram averaging methods, we reveal the in vivo structure of an intact T2SS imaged within the human pathogen Legionella pneumophila. Although the T2SS has only limited sequence and component homology with the evolutionarily related type IV pilus (T4P) system4,5, we show that their overall architectures are remarkably similar. Despite similarities, there are also differences, including, for example, that the T2SS-ATPase complex is usually present but disengaged from the inner membrane, the T2SS has a much longer periplasmic vestibule and it has a short-lived flexible pseudopilus. Placing atomic models of the components into our electron cryotomography map produced a complete architectural model of the intact T2SS that provides insights into the structure and function of its components, its position within the cell envelope and the interactions between its different subcomplexes.


Assuntos
Legionella pneumophila/química , Sistemas de Secreção Tipo II/química , Sistemas de Secreção Tipo II/ultraestrutura , Proteínas de Bactérias/química , Microscopia Crioeletrônica , Fímbrias Bacterianas/química , Fímbrias Bacterianas/ultraestrutura , Legionella pneumophila/ultraestrutura , Modelos Moleculares , Fatores de Virulência
7.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405960

RESUMO

It was previously determined that the type II secretion system (T2SS) promotes the ability of Legionella pneumophila to grow in coculture with amoebae. Here, we discerned the stage of intracellular infection that is potentiated by comparing the wild-type and T2SS mutant legionellae for their capacity to parasitize Acanthamoeba castellanii Whereas the mutant behaved normally for entry into the host cells and subsequent evasion of degradative lysosomes, it was impaired in the ability to replicate, with that defect being first evident at approximately 9 h postentry. The replication defect was initially documented in three ways: by determining the numbers of CFU recovered from the lysates of the infected monolayers, by monitoring the levels of fluorescence associated with amoebal monolayers infected with green fluorescent protein (GFP)-expressing bacteria, and by utilizing flow cytometry to quantitate the amounts of GFP-expressing bacteria in individual amoebae. By employing confocal microscopy and newer imaging techniques, we further determined the progression in volume and shape of the bacterial vacuoles and found that the T2SS mutant grows at a decreased rate and does not attain maximally sized phagosomes. Overall, the entire infection cycle (i.e., entry to egress) was considerably slower for the T2SS mutant than it was for the wild-type strain, and the mutant's defect was maintained over multiple rounds of infection. Thus, the T2SS is absolutely required for L. pneumophila to grow to larger numbers in its intravacuolar niche within amoebae. Combining these results with those of our recent analysis of macrophage infection, T2SS is clearly a major component of L. pneumophila intracellular infection.


Assuntos
Acanthamoeba castellanii/microbiologia , Legionella pneumophila/fisiologia , Sistemas de Secreção Tipo II/fisiologia , Vacúolos , Fenômenos Fisiológicos Bacterianos
8.
Infect Immun ; 84(8): 2185-2197, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27185787

RESUMO

Legionella pneumophila is an intracellular bacterial pathogen that replicates in alveolar macrophages, causing a severe form of pneumonia. Intracellular growth of the bacterium depends on its ability to sequester iron from the host cell. In the L. pneumophila strain 130b, one mechanism used to acquire this essential nutrient is the siderophore legiobactin. Iron-bound legiobactin is imported by the transport protein LbtU. Here, we describe the role of LbtP, a paralog of LbtU, in iron acquisition in the L. pneumophila strain Philadelphia-1. Similar to LbtU, LbtP is a siderophore transport protein and is required for robust growth under iron-limiting conditions. Despite their similar functions, however, LbtU and LbtP do not contribute equally to iron acquisition. The Philadelphia-1 strain lacking LbtP is more sensitive to iron deprivation in vitro Moreover, LbtP is important for L. pneumophila growth within macrophages while LbtU is dispensable. These results demonstrate that LbtP plays a dominant role over LbtU in iron acquisition. In contrast, loss of both LbtP and LbtU does not impair L. pneumophila growth in the amoebal host Acanthamoeba castellanii, demonstrating a host-specific requirement for the activities of these two transporters in iron acquisition. The growth defect of the ΔlbtP mutant in macrophages is not due to alterations in growth kinetics. Instead, the absence of LbtP limits L. pneumophila replication and causes bacteria to prematurely exit the host cell. These results demonstrate the existence of a preprogrammed exit strategy in response to iron limitation that allows L. pneumophila to abandon the host cell when nutrients are exhausted.


Assuntos
Ferro/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Proteínas de Bactérias/genética , Ordem dos Genes , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Mutação
9.
J Med Chem ; 58(21): 8402-12, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26458252

RESUMO

Phenylalanine hydroxylase catalyzes the first step in the synthesis of pyomelanin, a pigment that aids in the acquisition of essential iron in certain bacteria. In this work, we present the development and application of a drug discovery protocol by targeting this enzyme in Legionella pneumophila, the major causative agent of Legionnaires' disease. We employ a combination of high-throughput screening to identify small-molecule binders, enzymatic activity measurements to identify inhibitors in vitro, and the verification of the inhibitory effect in vivo. The most potent inhibitor shows an IC50 value in the low micromolar range and successfully abolishes the synthesis of pyomelanin in L. pneumophila cultures at 10 µM. Thus, this compound represents a novel and effective tool for investigating the role of pyomelanin in the biology and pathogenicity of this organism. Altogether, the results demonstrate a successful pathway for drug development focusing on binding specificity in the initial high-throughput screening steps.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Legionella pneumophila/efeitos dos fármacos , Legionella pneumophila/enzimologia , Doença dos Legionários/microbiologia , Melaninas/metabolismo , Fenilalanina Hidroxilase/antagonistas & inibidores , Descoberta de Drogas , Humanos , Ferro/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/tratamento farmacológico , Ligantes , Melaninas/antagonistas & inibidores , Fenilalanina Hidroxilase/metabolismo
10.
Environ Microbiol ; 17(4): 1338-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25141909

RESUMO

Legionella pneumophila is a pathogenic bacterium commonly found in water. Eventually, it could be transmitted to humans via inhalation of contaminated aerosols. Iron is known as a key requirement for the growth of L. pneumophila in the environment and within its hosts. Many studies were performed to understand iron utilization by L. pneumophila but no global approaches were conducted. In this study, transcriptomic analyses were performed, comparing gene expression in L. pneumophila in standard versus iron restricted conditions. Among the regulated genes, a newly described one, lpp_2867, was highly induced in iron-restricted conditions. Mutants lacking this gene in L. pneumophila were not affected in siderophore synthesis or utilization. On the contrary, they were defective for growth on iron-depleted solid media and for ferrous iron uptake. A sequence analysis predicts that Lpp_2867 is a membrane protein, suggesting that it is involved in ferrous iron transport. We thus named it IroT, for iron transporter. Infection assays showed that the mutants are highly impaired in intracellular growth within their environmental host Acanthamoeba castellanii and human macrophages. Taken together, our results show that IroT is involved, directly or indirectly, in ferrous iron transport and is a key virulence factor for L. pneumophila.


Assuntos
Amoeba/microbiologia , Ferro/metabolismo , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Doença dos Legionários/microbiologia , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Transporte Biológico , Humanos , Legionella pneumophila/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Virulência , Fatores de Virulência/genética
11.
Infect Immun ; 81(11): 4182-91, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23980114

RESUMO

Iron acquisition is critical to the growth and virulence of Legionella pneumophila. Previously, we found that L. pneumophila uses both a ferrisiderophore pathway and ferrous iron transport to obtain iron. We now report that two molecules secreted by L. pneumophila, homogentisic acid (HGA) and its polymerized variant (HGA-melanin, a pyomelanin), are able to directly mediate the reduction of various ferric iron salts. Furthermore, HGA, synthetic HGA-melanin, and HGA-melanin derived from bacterial supernatants enhanced the ability of L. pneumophila and other species of Legionella to take up radiolabeled iron. Enhanced iron uptake was not observed with a ferrous iron transport mutant. Thus, HGA and HGA-melanin mediate ferric iron reduction, with the resulting ferrous iron being available to the bacterium for uptake. Upon further testing of L. pneumophila culture supernatants, we found that significant amounts of ferric and ferrous iron were associated with secreted HGA-melanin. Importantly, a pyomelanin-containing fraction obtained from a wild-type culture supernatant was able to stimulate the growth of iron-starved legionellae. That the corresponding supernatant fraction obtained from a nonpigmented mutant culture did not stimulate growth demonstrated that HGA-melanin is able to both promote iron uptake and enhance growth under iron-limiting conditions. Indicative of a complementary role in iron acquisition, HGA-melanin levels were inversely related to the levels of siderophore activity. Compatible with a role in the ecology and pathogenesis of L. pneumophila, HGA and HGA-melanin were effective at reducing and releasing iron from both insoluble ferric hydroxide and the mammalian iron chelates ferritin and transferrin.


Assuntos
Ferro/metabolismo , Legionella pneumophila/crescimento & desenvolvimento , Legionella pneumophila/metabolismo , Melaninas/metabolismo , Ácido Homogentísico/metabolismo , Compostos de Ferro/metabolismo , Radioisótopos de Ferro/metabolismo , Marcação por Isótopo , Oxirredução
12.
Infect Immun ; 81(8): 2828-37, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716605

RESUMO

Francisella tularensis, the bacterial cause of tularemia, infects the liver and replicates in hepatocytes in vivo and in vitro. However, the factors that govern adaptation of F. tularensis to the intrahepatocytic niche have not been identified. Using cDNA microarrays, we determined the transcriptional profile of the live vaccine strain (LVS) of F. tularensis grown in the FL83B murine hepatocytic cell line compared to that of F. tularensis cultured in broth. The fslC gene of the fsl operon was the most highly upregulated. Deletion of fslC eliminated the ability of the LVS to produce siderophore, which is involved in uptake of ferric iron, but it did not impair its growth in hepatocytes, A549 epithelial cells, or macrophages. Therefore, we sought an alternative means by which F. tularensis might obtain iron. Deletion of feoB, which encodes a putative ferrous iron transporter, retarded replication of the LVS in iron-restricted media, reduced its growth in hepatocytic and epithelial cells, and impaired its acquisition of iron. Survival of mice infected intradermally with a lethal dose of the LVS was slightly improved by deletion of fslC but was not altered by loss of feoB. However, the ΔfeoB mutant showed diminished ability to colonize the lungs, liver, and spleen of mice that received sublethal inocula. Thus, FeoB represents a previously unidentified mechanism for uptake of iron by F. tularensis. Moreover, failure to produce a mutant strain lacking both feoB and fslC suggests that FeoB and the proteins of the fsl operon are the only major means by which F. tularensis acquires iron.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Francisella tularensis/metabolismo , Ferro/metabolismo , Tularemia/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Hepatócitos/microbiologia , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência/fisiologia
13.
PLoS One ; 7(9): e46209, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049981

RESUMO

BACKGROUND: Legionella pneumophila is a pathogenic bacterium that can cause Legionnaires' disease and other non-pneumonic infections in humans. This bacterium produces a pyomelanin pigment, a potential virulence factor with ferric reductase activity. In this work, we have investigated the role of phenylalanine hydroxylase from L. pneumophila (lpPAH), the product of the phhA gene, in the synthesis of the pyomelanin pigment and the growth of the bacterium in defined compositions. METHODOLOGY/PRINCIPAL FINDINGS: Comparative studies of wild-type and phhA mutant corroborate that lpPAH provides the excess tyrosine for pigment synthesis. phhA and letA (gacA) appear transcriptionally linked when bacteria were grown in buffered yeast extract medium at 37°C. phhA is expressed in L. pneumophila growing in macrophages. We also cloned and characterized lpPAH, which showed many characteristics of other PAHs studied so far, including Fe(II) requirement for activity. However, it also showed many particular properties such as dimerization, a high conformational thermal stability, with a midpoint denaturation temperature (T(m)) = 79 ± 0.5°C, a high specific activity at 37°C (10.2 ± 0.3 µmol L-Tyr/mg/min) and low affinity for the substrate (K(m) (L-Phe) = 735 ± 50 µM. CONCLUSIONS/SIGNIFICANCE: lpPAH has a major functional role in the synthesis of pyomelanin and promotes growth in low-tyrosine media. The high thermal stability of lpPAH might reflect the adaptation of the enzyme to withstand relatively high survival temperatures.


Assuntos
Legionella pneumophila/enzimologia , Melaninas/biossíntese , Fenilalanina Hidroxilase/metabolismo , Proteínas de Bactérias , Estabilidade Enzimática , Temperatura , Tirosina/metabolismo
14.
Cell Mol Immunol ; 1(6): 467-70, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16293217

RESUMO

The proliferation response of gammadelta T cells to the antigen from heat-treated Mycobacterium tuberculosis H37Ra (M.tb Ag) was used as a good model in gammadeltaT cell research. From preliminary research it is found that activated NK cells positively elevated gammadeltaT cells proliferation after simulating PBMCs with M.tb Ag. To investigate different behaviors of NK cells, gammadeltaNKT cells, gammadeltaT cells and relationships between these cell subsets, activation and proliferation of different cell subsets of PBMCs in response to M.tb Ag were analyzed. We demonstrated that NK cells, gammadeltaNKT cells and gammadeltaT cells could be activated after stimulation with M.tb Ag. gammadeltaNKT cells and gammadelta T cells proliferated while the number of NK cells decreased after 11 day-simulation with M.tb Ag. Meanwhile, at the early time of stimulation the cytotoxicity of PBMCs was enhanced.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Temperatura Alta , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Proliferação de Células , Células Cultivadas , Humanos , Células Matadoras Naturais/citologia , Desnaturação Proteica , Linfócitos T/citologia , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...