Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2321545121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713621

RESUMO

The efficiency of photodynamic therapy (PDT) is greatly dependent on intrinsic features of photosensitizers (PSs), but most PSs suffer from narrow diffusion distances and short life span of singlet oxygen (1O2). Here, to conquer this issue, we propose a strategy for in situ formation of complexes between PSs and proteins to deactivate proteins, leading to highly effective PDT. The tetrafluorophenyl bacteriochlorin (FBC), a strong near-infrared absorbing photosensitizer, can tightly bind to intracellular proteins to form stable complexes, which breaks through the space-time constraints of PSs and proteins. The generated singlet oxygen directly causes the protein dysfunction, leading to high efficiency of PSs. To enable efficient delivery of PSs, a charge-conversional and redox-responsive block copolymer POEGMA-b-(PAEMA/DMMA-co-BMA) (PB) was designed to construct a protein-binding photodynamic nanoinhibitor (FBC@PB), which not only prolongs blood circulation and enhances cellular uptake but also releases FBC on demand in tumor microenvironment (TME). Meanwhile, PDT-induced destruction of cancer cells could produce tumor-associated antigens which were capable to trigger robust antitumor immune responses, facilitating the eradication of residual cancer cells. A series of experiments in vitro and in vivo demonstrated that this multifunctional nanoinhibitor provides a promising strategy to extend photodynamic immunotherapy.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Humanos , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linhagem Celular Tumoral , Oxigênio Singlete/metabolismo , Porfirinas/farmacologia , Porfirinas/química , Ligação Proteica , Nanopartículas/química
2.
Materials (Basel) ; 17(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793297

RESUMO

Due to the recurrent starting and stopping operations of automobiles during service, their engines' hot ends are continually subjected to high-temperature cyclic oxidation. Therefore, it is crucial to develop ferritic stainless steels with better high-temperature oxidation resistance. This study focuses on improving the high-temperature cyclic oxidation performance of 18Cr-Mo (444-type) ferritic stainless steel by alloying with high-melting-point metal W and the rare earth element Ce. For this purpose, a high-temperature cyclic oxidation experiment was designed to simulate the actual service environment and investigate the high-temperature cyclic oxidation behavior and microstructure evolution of 444-type ferritic stainless steel alloyed with W and Ce. The oxide structure and composition formed during this process were analyzed and characterized using scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS) and electron probe X-ray micro-analyzer (EPMA), in order to reveal the mechanism of action of W and Ce in the cyclic oxidation process. The results show that 18Cr-Mo ferritic stainless steel alloyed with W and Ce exhibits an excellent resistance to high-temperature cyclic oxidation. The element W can promote the precipitation of the Laves phase between the matrix and the oxide film, and the small-sized Laves phase can inhibit the interfacial diffusion of oxidation reaction elements and prevent the inward growth of the oxide film. The element Ce can refine oxide particles and reduce the thickness of the oxide film. CeO2 particles within the oxide film can serve as nucleation sites for the formation of oxide particles from reactive elements, and they also contribute to pinning the oxide film, thereby enhancing its adhesion.

3.
CNS Neurosci Ther ; 30(4): e14712, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38615364

RESUMO

BACKGROUND: The specific non-motor symptoms associated with α-synucleinopathies, including orthostatic hypotension (OH), cognitive impairment, and emotional abnormalities, have been a subject of ongoing controversy over the mechanisms underlying the development of a vicious cycle among them. The distinct structural alterations in white matter (WM) in patients with α-synucleinopathies experiencing OH, alongside their association with other non-motor symptoms, remain unexplored. This study employs axial diffusivity and density imaging (NODDI) to investigate WM damage specific to α-synucleinopathies with concurrent OH, delivering fresh evidence to supplement our understanding of the pathogenic mechanisms and pathological rationales behind the occurrence of a spectrum of non-motor functional impairments in α-synucleinopathies. METHODS: This study recruited 49 individuals diagnosed with α-synucleinopathies, stratified into an α-OH group (n = 24) and an α-NOH group (without OH, n = 25). Additionally, 17 healthy controls were included for supine and standing blood pressure data collection, as well as neuropsychological assessments. Magnetic resonance imaging (MRI) was utilized for the calculation of NODDI parameters, and tract-based spatial statistics (TBSS) were employed to explore differential clusters. The fibers covered by these clusters were defined as regions of interest (ROI) for the extraction of NODDI parameter values and the analysis of their correlation with neuropsychological scores. RESULTS: The TBSS analysis unveiled specific cerebral regions exhibiting disparities within the α-OH group as compared to both the α-NOH group and the healthy controls. These differences were evident in clusters that indicated a decrease in the acquisition of the neurite density index (NDI), a reduction in the orientation dispersion index (ODI), and an increase in the isotropic volume fraction (FISO) (p < 0.05). The extracted values from these ROIs demonstrated significant correlations with clinically assessed differences in supine and standing blood pressure, overall cognitive scores, and anxiety-depression ratings (p < 0.05). CONCLUSION: Patients with α-synucleinopathies experiencing OH exhibit distinctive patterns of microstructural damage in the WM as revealed by the NODDI model, and there is a correlation with the onset and progression of non-motor functional impairments.


Assuntos
Hipotensão Ortostática , Sinucleinopatias , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Hipotensão Ortostática/diagnóstico por imagem , Encéfalo , Depressão , Anticorpos
4.
J Clin Med ; 13(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398329

RESUMO

(1) Background: Structural remodeling plays an important role in the pathophysiology of atrial fibrillation (AF). It is likely that structural remodeling occurs transmurally, giving rise to electrical endo-epicardial asynchrony (EEA). Recent studies have suggested that areas of EEA may be suitable targets for ablation therapy of AF. We hypothesized that the degree of EEA is more pronounced in areas of transmural conduction block (T-CB) than single-sided CB (SS-CB). This study examined the degree to which SS-CB and T-CB enhance EEA and which specific unipolar potential morphology parameters are predictive for SS-CB or T-CB. (2) Methods: Simultaneous endo-epicardial mapping in the human right atrium was performed in 86 patients. Potential morphology parameters included unipolar potential voltages, low-voltage areas, potential complexity (long double and fractionated potentials: LDPs and FPs), and the duration of fractionation. (3) Results: EEA was mostly affected by the presence of T-CB areas. Lower potential voltages and more LDPs and FPs were observed in T-CB areas compared to SS-CB areas. (4) Conclusion: Areas of T-CB could be most accurately predicted by combining epicardial unipolar potential morphology parameters, including voltages, fractionation, and fractionation duration (AUC = 0.91). If transmural areas of CB indeed play a pivotal role in the pathophysiology of AF, they could theoretically be used as target sites for ablation.

5.
CNS Neurosci Ther ; 30(2): e14571, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421092

RESUMO

BACKGROUND: In α-synucleinopathies, the dysfunction of the autonomic nervous system which typically manifests as orthostatic hypotension (OH) often leads to severe consequences and poses therapeutic challenges. This study aims to discover the brain-cardiac electrophysiological changes in OH patients with α-synucleinopathies using the rapid quantitative electroencephalography (qEEG) coupled with heart rate variability (HRV) technique to identify rapid, noninvasive biomarkers for early warning and diagnosis, as well as shed new light on complementary treatment approaches such as brain stimulation targets. METHODS: In this study, 26 subjects of α-synucleinopathies with OH (α-OH group), 21 subjects of α-synucleinopathies without OH (α-NOH group), and 34 healthy controls (control group) were included from September 2021 to August 2023 (NCT05527067). The heart rate-blood pressure variations in supine and standing positions were monitored, and synchronization parameters of seated resting-state HRV coupled with qEEG were collected. Time-domain and frequency-domain of HRV measures as well as peak frequency and power of the brainwaves were extracted. Differences between these three groups were compared, and correlations between brain-heart parameters were analyzed. RESULTS: The research results showed that the time-domain parameters such as MxDMn, pNN50, RMSSD, and SDSD of seated resting-state HRV exhibited a significant decrease only in the α-OH group compared to the healthy control group (p < 0.05), while there was no significant difference between the α-NOH group and the healthy control group. Several time-domain and frequency-domain parameters of seated resting-state HRV were found to be correlated with the blood pressure changes within the first 5 min of transitioning from supine to standing position (p < 0.05). Differences were observed in the power of beta1 waves (F4 and Fp2) and beta2 waves (Fp2 and F4) in the seated resting-state qEEG between the α-OH and α-NOH groups (p < 0.05). The peak frequency of theta waves in the Cz region also showed a difference (p < 0.05). The power of beta2 waves in the Fp2 and F4 brain regions correlated with frequency-domain parameters of HRV (p < 0.05). Additionally, abnormal electrical activity in the alpha, theta, and beta1 waves was associated with changes in heart rate and blood pressure within the first 5 min of transitioning from supine to standing position (p < 0.05). CONCLUSION: Rapid resting-state HRV with certain time-domain parameters below normal levels may serve as a predictive indicator for the occurrence of orthostatic hypotension (OH) in patients with α-synucleinopathies. Additionally, the deterioration of HRV parameters correlates with synchronous abnormal qEEG patterns, which can provide insights into the brain stimulation target areas for OH in α-synucleinopathy patients.


Assuntos
Hipotensão Ortostática , Sinucleinopatias , Humanos , Hipotensão Ortostática/diagnóstico , Hipotensão Ortostática/terapia , Frequência Cardíaca/fisiologia , Encéfalo/diagnóstico por imagem , Pressão Sanguínea/fisiologia , Eletroencefalografia , Eletrofisiologia
6.
Infect Drug Resist ; 17: 61-67, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38205064

RESUMO

Purpose: The continuous rise in carbapenemase-producing Enterobacteriaceae infections is a major public health concern. However, there is limited information available on New Delhi metallo-ß-lactamase-1 (NDM-1) producing Citrobacter koseri. In this study, we isolated a blaNDM-1-carrying C. koseri from a stool sample of an inpatient. Our aim was to investigate the phenotypic and genomic features of this clinically derived carbapenem-resistant C. koseri isolate and to characterize the transmission pattern of the IncFII/IncN plasmid that carries the blaNDM-1 gene. Methods and Results: S1-PFGE, Southern blot and conjugation assay confirmed the presence of blaNDM-1 gene in a conjugative plasmid. C. koseri L2395 and transconjugant L2395-EC600 strains showed similar resistance spectrum. Whole-genome analysis revealed that pL2395_NDM is an IncFII/IncN plasmid with a length of 67,839 bp. Moreover, blaNDM-1 gene was found encoded in the ISKpn19-blaNDM-1-ble-tnpF-dsbD-cutA-ISKpn19 cassette array. Phylogenetic analysis revealed that strain L2395 was close to an IMP-4-bearing C. koseri from Australia. Conclusion: Ongoing surveillance will be essential to control and prevent the spread of carbapenem-resistant Citrobacter spp. in the future.

7.
Lab Chip ; 24(2): 244-253, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38059468

RESUMO

Microalgae not only play a vital role in the ecosystem but also hold promising commercial applications. Conventional methods of detecting and monitoring microalgae rely on field sampling followed by transportation to the laboratory for manual analysis, which is both time-consuming and laborious. Although machine learning (ML) algorithms have been introduced for microalgae detection in the laboratory, no integrated platform approach has yet emerged to enable real-time, on-site sampling and analysing. To solve this problem, here, we develop an automated and intelligent microfluidic platform (AIMP) that can offer automated system control, intelligent data analysis, and user interaction, providing an economical and portable solution to alleviate the drawbacks of conventional methods for microalgae detection and monitoring. We demonstrate the feasibility of the AIMP by detecting and classifying four microalgal species (Cosmarium, Closterium, Micrasterias, and Haematococcus Pluvialis) that exhibit varying sizes (from a few to hundreds of microns) and morphologies. The trained microalgae species detection network (MSDN, based on YOLOv5 architecture) achieves a high overall mean average precision at 0.5 intersection-over-union (mAP@0.5) of 92.8%. Furthermore, the versatility of the AIMP is demonstrated by long-term monitoring of astaxanthin production from Haematococcus Pluvialis over a period of 30 days. The AIMP achieved 97.5% accuracy in the detection of Haematococcus Pluvialis and 96.3% in further classification based on astaxanthin accumulation. This study opens up a new path towards microalgae detection and monitoring using portable intelligent devices, providing new ideas to accelerate progress in the ecological studies and commercial exploitation of microalgae.


Assuntos
Clorofíceas , Microalgas , Ecossistema , Microfluídica , Xantofilas
8.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38040494

RESUMO

Single-cell Hi-C (scHi-C) technology enables the investigation of 3D chromatin structure variability across individual cells. However, the analysis of scHi-C data is challenged by a large number of missing values. Here, we present a scHi-C data imputation model HiC-SGL, based on Subgraph extraction and graph representation learning. HiC-SGL can also learn informative low-dimensional embeddings of cells. We demonstrate that our method surpasses existing methods in terms of imputation accuracy and clustering performance by various metrics.


Assuntos
Cromatina , Cromatina/genética , Análise por Conglomerados
9.
Glia ; 71(9): 2266-2284, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300531

RESUMO

Synucleinopathies refer to a range of neurodegenerative diseases caused by abnormal α-synuclein (α-Syn) deposition, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Their pathogenesis is strongly linked to microglial dysfunction and neuroinflammation, which involves the leucine-rich-repeat kinase 2 (LRRK2)-regulated nuclear factor of activated T-cells (NFAT). Of the NFAT family, NFATc1 has been found to be increasingly translocated into the nucleus in α-syn stimulation. However, the specific role of NFATc1-mediated intracellular signaling in PD remains elusive in regulating microglial functions. In the current study, we crossbred LRRK2 or NFATc1 conditional knockout mice with Lyz2Cre mice to generate mice with microglia-specific deletion of LRRK2 or NFATc1, and by stereotactic injection of fibrillary α-Syn, we generated PD models in these mice. We found that LRRK2 deficiency enhanced microglial phagocytosis in the mice after α-Syn exposure and that genetic inhibition of NFATc1 markedly diminished phagocytosis and α-Syn elimination. We further demonstrated that LRRK2 negatively regulated NFATc1 in α-Syn-treated microglia, in which microglial LRRK2-deficiency facilitated NFATc1 nuclear translocation, CX3CR1 upregulation, and microglia migration. Additionally, NFATc1 translocation upregulated the expression of Rab7 and promoted the formation of late lysosomes, resulting in α-Syn degradation. In contrast, the microglial NFATc1 deficiency impaired CX3CR1 upregulation and the formation of Rab7-mediated late lysosomes. These findings highlight the critical role of NFATc1 in modulating microglial migration and phagocytosis, in which the LRRK2-NFATc1 signaling pathway regulates the expression of microglial CX3CR1 and endocytic degradative Rab7 to attenuate α-synuclein immunotoxicity.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Lisossomos/metabolismo , Camundongos Knockout , Microglia/metabolismo , Doença de Parkinson/genética , Fagocitose/genética
10.
Apoptosis ; 28(7-8): 1090-1112, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37079192

RESUMO

Pancreatic cancer (PC) is a highly malignant digestive tract tumor, with a dismal 5-year survival rate. Recently, cuproptosis was found to be copper-dependent cell death. This work aims to establish a cuproptosis-related lncRNA signature which could predict the prognosis of PC patients and help clinical decision-making. Firstly, cuproptosis-related lncRNAs were identified in the TCGA-PAAD database. Next, a cuproptosis-related lncRNA signature based on five lncRNAs was established. Besides, the ICGC cohort and our samples from 30 PC patients served as external validation groups to verify the predictive power of the risk signature. Then, the expression of CASC8 was verified in PC samples, scRNA-seq dataset CRA001160, and PC cell lines. The correlation between CASC8 and cuproptosis-related genes was validated by Real-Time PCR. Additionally, the roles of CASC8 in PC progression and immune microenvironment characterization were explored by loss-of-function assay. As showed in the results, the prognosis of patients with higher risk scores was prominently worse than that with lower risk scores. Real-Time PCR and single cell analysis suggested that CASC8 was highly expressed in pancreatic cancer and related to cuproptosis. Additionally, gene inhibition of CASC8 impacted the proliferation, apoptosis and migration of PC cells. Furthermore, CASC8 was demonstrated to impact the expression of CD274 and several chemokines, and serve as a key indicator in tumor immune microenvironment characterization. In conclusion, the cuproptosis-related lncRNA signature could provide valuable indications for the prognosis of PC patients, and CASC8 was a candidate biomarker for not only predicting the progression of PC patients but also their antitumor immune responses.


Assuntos
Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Apoptose/genética , Neoplasias Pancreáticas/genética , Morte Celular , Microambiente Tumoral/genética , Neoplasias Pancreáticas
11.
Cell Oncol (Dordr) ; 46(4): 969-985, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37014552

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate, in which about 90% of patients harbor somatic oncogenic point mutations in KRAS. SPRY family genes have been recognized as crucial negative regulators of Ras/Raf/ERK signaling. Here, we investigate the expression and role of SPRY proteins in PDAC. METHODS: Expression of SPRY genes in human and mice PDAC was analyzed using The Cancer Genome Atlas and Gene Expression Omnibus datasets, and by immunohistochemistry analysis. Gain-of-function, loss-of-function of Spry1 and orthotopic xenograft model were adopted to investigate the function of Spry1 in mice PDAC. Bioinformatics analysis, transwell and flowcytometry analysis were used to identify the effects of SPRY1 on immune cells. Co-immunoprecipitation and K-ras4B G12V overexpression were used to identify molecular mechanism. RESULTS: SPRY1 expression was remarkably increased in PDAC tissues and positively associated with poor prognosis of PDAC patients. SPRY1 knockdown suppressed tumor growth in mice. SPRY1 was found to promote CXCL12 expression and facilitate neutrophil and macrophage infiltration via CXCL12-CXCR4 axis. Pharmacological inhibition of CXCL12-CXCR4 largely abrogated the oncogenic functions of SPRY1 by suppressing neutrophil and macrophage infiltration. Mechanistically, SPRY1 interacted with ubiquitin carboxy-terminal hydrolase L1 to induce activation of nuclear factor κB signaling and ultimately increase CXCL12 expression. Moreover, SPRY1 transcription was dependent on KRAS mutation and was mediated by MAPK-ERK signaling. CONCLUSION: High expression of SPRY1 can function as an oncogene in PDAC by promoting cancer-associated inflammation. Targeting SPRY1 might be an important approach for designing new strategy of tumor therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proliferação de Células/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Macrófagos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Quimiocina CXCL12/metabolismo , Neoplasias Pancreáticas
12.
Ann Clin Microbiol Antimicrob ; 22(1): 31, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120531

RESUMO

BACKGROUND: Despite the global prevalence of Klebsiella pneumoniae Carbapenemase (KPC)-type class A ß-lactamases, occurrences of KPC-3-producing isolates in China remain infrequent. This study aims to explore the emergence, antibiotic resistance profiles, and plasmid characteristics of blaKPC-3-carrying Pseudomonas aeruginosa. METHODS: Species identification was performed by MALDI-TOF-MS, and antimicrobial resistance genes (ARGs) were identified by polymerase chain reaction (PCR). The characteristics of the target strain were detected by whole-genome sequencing (WGS) and antimicrobial susceptibility testing (AST). Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis(S1-PFGE), Southern blotting and transconjugation experiment. RESULTS: Five P. aeruginosa strains carrying blaKPC-3 were isolated from two Chinese patients without a history of travelling to endemic areas. All strains belonged to the novel sequence type ST1076. The blaKPC-3 was carried on a 395-kb IncP-2 megaplasmid with a conserved structure (IS6100-ISKpn27-blaKPC-3-ISKpn6-korC-klcA), and this genetic sequence was identical to many plasmid-encoded KPC of Pseudomonas species. By further analyzing the genetic context, it was supposed that the original of blaKPC-3 in our work was a series of mutation of blaKPC-2. CONCLUSIONS: The emergence of a multidrug resistance IncP-2 megaplasmid and clonal transmission of blaKPC-3-producing P. aeruginosa in China underlined the crucial need for continuous monitoring of blaKPC-3 for prevention and control of its further dissemination in China.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Pseudomonas aeruginosa/genética , Tipagem de Sequências Multilocus , beta-Lactamases/genética , Proteínas de Bactérias/genética , Plasmídeos/genética , China/epidemiologia , Antibacterianos/farmacologia , Infecções por Klebsiella/epidemiologia
13.
Sci Adv ; 9(4): eadf1141, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696510

RESUMO

Materials with programmable conductivity and stiffness offer new design opportunities for next-generation engineered systems in soft robotics and electronic devices. However, existing approaches fail to harness variable electrical and mechanical properties synergistically and lack the ability to self-respond to environmental changes. We report an electro-mechano responsive Field's metal hybrid elastomer exhibiting variable and tunable conductivity, strain sensitivity, and stiffness. By synergistically harnessing these properties, we demonstrate two applications with over an order of magnitude performance improvement compared to state-of-the-art, including a self-triggered multiaxis compliance compensator for robotic manipulators, and a resettable, highly compact, and fast current-limiting fuse with an adjustable fusing current. We envisage that the extraordinary electromechanical properties of our hybrid elastomer will bring substantial advancements in resilient robotic systems, intelligent instruments, and flexible electronics.

14.
Cell Oncol (Dordr) ; 46(1): 17-48, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36367669

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by poor treatment response and low survival time. The current clinical treatment for advanced PDAC is still not effective. In recent years, the research and application of immunotherapy have developed rapidly and achieved substantial results in many malignant tumors. However, the translational application in PDAC is still far from satisfactory and needs to be developed urgently. To carry out the study of immunotherapy, it is necessary to fully decipher the immune characteristics of PDAC. This review summarizes the recent progress of the tumor microenvironment (TME) of PDAC and highlights its link with immunotherapy. We describe the molecular cues and corresponding intervention methods, collate several promising targets and progress worthy of further study, and put forward the importance of integrated immunotherapy to provide ideas for future research of TME and immunotherapy of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Neoplasias Pancreáticas/patologia , Imunoterapia/métodos , Carcinoma Ductal Pancreático/patologia , Terapia de Imunossupressão , Neoplasias Pancreáticas
15.
Biosens Bioelectron ; 222: 114944, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470061

RESUMO

The effective analysis of the basic structure and functional information of bioparticles are of great significance for the early diagnosis of diseases. The synergism between microfluidics and particle manipulation/detection technologies offers enhanced system integration capability and test accuracy for the detection of various bioparticles. Most microfluidic detection platforms are based on optical strategies such as fluorescence, absorbance, and image recognition. Although optical microfluidic platforms have proven their capabilities in the practical clinical detection of bioparticles, shortcomings such as expensive components and whole bulky devices have limited their practicality in the development of point-of-care testing (POCT) systems to be used in remote and underdeveloped areas. Therefore, there is an urgent need to develop cost-effective non-optical microfluidic platforms for bioparticle detection that can act as alternatives to optical counterparts. In this review, we first briefly summarise passive and active methods for bioparticle manipulation in microfluidics. Then, we survey the latest progress in non-optical microfluidic strategies based on electrical, magnetic, and acoustic techniques for bioparticle detection. Finally, a perspective is offered, clarifying challenges faced by current non-optical platforms in developing practical POCT devices and clinical applications.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Testes Imediatos , Sistemas Automatizados de Assistência Junto ao Leito , Dispositivos Lab-On-A-Chip
16.
Hepatobiliary Pancreat Dis Int ; 22(2): 169-178, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35508435

RESUMO

BACKGROUND: ADAMTS (a disintegrin and metalloproteinase with thrombospondin-like motifs) family, a group of extracellular multifunctional enzymes, has been proven to play a pivotal role in the tumor. In pancreatic cancer, the role and mechanism of this family remain unclear. The present study aimed to figure out the hub gene of ADAMTSs and explore the exact roles in the prognosis and biological functions in pancreatic ductal adenocarcinoma (PDAC). METHODS: We used several databases to analyze the ADAMTS family and then screen out the hub genes. The expression of ADAMTS12 in 106 pairs of PDAC tumors and adjacent normal tissues was examined by immunohistochemistry, and its correlations with clinical parameters were further analyzed. The impacts of ADAMTS12 on the migration of PDAC cells were predicted by gene set enrichment analysis and confirmed by transwell assays. The potential impacts of ADAMTS12 on the epithelial-mesenchymal transition (EMT) were identified by database analysis and experimental proof of real-time quantitative polymerase chain reaction (qPCR) and Western blotting. RESULTS: Our study found that ADAMTS12 was a crucial gene in PDAC, and it was highly expressed in tumor tissues when compared to that in the adjacent tissues. ADATMS12 had predictive value of a poor prognosis for PDAC. The elevation of ADAMTS12 was parallel to the progression of PDAC. Inhibition of ADAMTS12 suppressed the migration of PDAC cells and interfered with the process of EMT. CONCLUSIONS: ADAMTS12 is a crucial member of ADAMTSs in PDAC and a predictor of poor prognosis. Additionally, based on its impacts on migration and metastasis in PDAC and the relationship with EMT, ADAMTS12 plays a role of an oncogene in PDAC and may be a promising target for treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proliferação de Células/genética , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Neoplasias Pancreáticas
17.
Front Immunol ; 13: 983116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341459

RESUMO

Connexins are membrane expressed proteins, which could assemble into hexamers to transfer metabolites and secondary messengers. However, its roles in pancreatic cancer metastasis remains unknown. In this study, by comparing the gene expression patterns in primary pancreatic cancer patients primary and liver metastasis specimens, we found that Gap Junction Protein Beta 3 (GJB3) significantly increased in Pancreatic ductal adenocarcinoma (PDAC) liver metastasis. Animal experiments verified that GJB3 depletion suppressed the hepatic metastasis of PDAC cancer cells. Further, GJB3 over expression increased the neutrophil infiltration. Mechanistic study revealed that GJB3 form channels between PDAC tumor cells and accumulated neutrophil, which transfer cyclic adenosine monophosphate (cAMP) from cancer to neutrophil cells, which supports the survival and polarization. Taken together, our data suggesting that GJB3 could act as a potential therapeutic target of PDAC liver metastasis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Neutrófilos/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Proteínas de Membrana , Neoplasias Pancreáticas
18.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36355508

RESUMO

Pancreatic adenocarcinoma (PAAD), one of the most malignant tumors, not only has abundant mesenchymal components, but is also characterized by an extremely high metastatic risk. The purpose of this study was to construct a model of stroma- and metastasis-associated prognostic signature, aiming to benefit the existing clinical staging system and predict the prognosis of patients. First, stroma-associated genes were screened from the TCGA database with the ESTIMATE algorithm. Subsequently, transcriptomic data from clinical tissues in the RenJi cohort were screened for metastasis-associated genes. Integrating the two sets of genes, we constructed a risk prognostic signature by Cox and LASSO regression analysis. We then obtained a risk score by a quantitative formula and divided all samples into high- and low-risk groups based on the scores. The results demonstrated that patients with high-risk scores have a worse prognosis than those with low-risk scores, both in the TCGA database and in the RenJi cohort. In addition, tumor mutation burden, chemotherapeutic drug sensitivity and immune infiltration analysis also exhibited significant differences between the two groups. In exploring the potential mechanisms of how stromal components affect tumor metastasis, we simulated different matrix stiffness in vitro to explore its effect on EMT key genes in PAAD cells. We found that cancer cells stimulated by high matrix stiffness may trigger EMT and promote PAAD metastasis.

19.
Sensors (Basel) ; 22(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36016026

RESUMO

With the rise of mobile edge computing (MEC), mobile services with the same or similar functions are gradually increasing. Usually, Quality of Service (QoS) has become an indicator to measure high-quality services. In the real MEC service invocation environment, due to time and network instability factors, users' QoS data feedback results are limited. Therefore, effectively predicting the Qos value to provide users with high-quality services has become a key issue. In this paper, we propose a truncated nuclear norm Low-rank Tensor Completion method for the QoS data prediction. This method represents complex multivariate QoS data by constructing tensors. Furthermore, the truncated nuclear norm is introduced in the QoS data tensor completion in order to mine the correlation between QoS data and improve the prediction accuracy. At the same time, the general rate parameter is introduced to control the truncation degree of tensor mode. Finally, the prediction approximate tensor is obtained by the Alternating Direction Multiplier Method iterative optimization algorithm. Numerical experiments are conducted based on the public QoS dataset WS-Dream. The results indicate that our QoS prediction method has better prediction accuracy than other methods under different missing density QoS data.

20.
Analyst ; 147(13): 2895-2917, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35611964

RESUMO

Flow cytometry has proven its capability for rapid and quantitative analysis of individual cells and the separation of targeted biological samples from others. The emerging microfluidics technology makes it possible to develop portable microfluidic diagnostic devices for point-of-care testing (POCT) applications. Microfluidic flow cytometry (MFCM), where flow cytometry and microfluidics are combined to achieve similar or even superior functionalities on microfluidic chips, provides a powerful single-cell characterisation and sorting tool for various biological samples. In recent years, researchers have made great progress in the development of the MFCM including focusing, detecting, and sorting subsystems, and its unique capabilities have been demonstrated in various biological applications. Moreover, liquid biopsy using blood can provide various physiological and pathological information. Thus, biomarkers from blood are regarded as meaningful circulating transporters of signal molecules or particles and have great potential to be used as non (or minimally)-invasive diagnostic tools. In this review, we summarise the recent progress of the key subsystems for MFCM and its achievements in blood-based biomarker analysis. Finally, foresight is offered to highlight the research challenges faced by MFCM in expanding into blood-based POCT applications, potentially yielding commercialisation opportunities.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Biomarcadores , Citometria de Fluxo , Dispositivos Lab-On-A-Chip , Testes Imediatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...