Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(36): 42917-42926, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34478622

RESUMO

The LiCoO2 cathode undergoes undesirable electrochemical performance when cycled with a high cut-off voltage (≥4.5 V versus Li/Li+). The unstable interface with poor kinetics is one of the main contributors to the performance failure. Hence, a hybrid Li-ion conductor (Li1.5Al0.5Ge1.5P3O12) and electron conductor (Al-doped ZnO) coating layer was built on the LiCoO2 surface. Characterization studies prove that a thick and conductive layer is homogeneously covered on LiCoO2 particles. The coating layer can not only enhance the interfacial ionic and electronic transport kinetics but also act as a protective layer to suppress the side reactions between the cathode and electrolyte. The modified LiCoO2 (HC-LCO) achieves an excellent cycling stability (77.1% capacity retention after 350 cycles at 1C) and rate capability (139.8 mAh g-1 at 10C) at 3.0-4.6 V. Investigations show that the protective layer can inhibit the particle cracks and Co dissolution and stabilize the cathode electrolyte interface (CEI). Furthermore, the irreversible phase transformation is still observed on the HC-LCO surface, indicating the phase transformation of the LiCoO2 surface may not be the main factor for fast performance failure. This work provides new insight of interfacial design for cathodes operating with a high cut-off voltage.

2.
ACS Appl Mater Interfaces ; 13(29): 34248-34257, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34236167

RESUMO

Metallic lithium (Li) has been regarded as an ideal candidate for anode materials in next-generation high-energy-density batteries. However, a ubiquitous spongy Li deposition results in low reversibility, huge interfacial impedance, and even safety issues, hindering its practical application. Herein, we proposed a bifunctional electrolyte (BiFE) to avoid the spongy Li deposition, in which lithium nitrate (LiNO3) facilitates a uniform granular Li nucleation via forming a kinetically favorable solid electrolyte interphase and silicon dioxide (SiO2) adsorbs anions to stabilize the electric field distribution near the electrode surface. Such a BiFE provides an even Li+ ion flux for the subsequent growth of electrochemical Li deposition, which was verified by ζ potential, Raman spectra, and specific capacitance characterizations, thus realizing a compact and uniform Li deposition via elaborative nucleation and growth regulation. An improved Li Coulombic efficiency of 99.1% can be achieved within BiFE. When used in Cu∥Li half-cells and Li∥Li symmetric cells, the high Li utilization prolonged the cycling life span to above 300 cycles and 1200 h, respectively. The compact Li deposition also resisted the corrosion of polysulfides to enhance the cycling performance of Li∥S full cells.

3.
J Phys Chem Lett ; 10(24): 7537-7546, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747279

RESUMO

Layered LiCoO2 has drawn tremendous attention as a modeling cathode for Li-ion batteries, while its structural instability, especially in the high delithiation region, remains unsolved. With the aim of revealing the structural fundamentals, LiCoO2 electrodes are investigated at a long delithiation range using both in situ and ex situ techniques. In the highly delithiated LiCoO2 electrode, the unique charge compensation process leads to a spatial charge gradient of Co2+/Co3+/Co4+ ions from surface to bulk, which can be further manipulated by structural distortion, Li extraction, and surface side reactions. The coordinated surface oxygen is shown to be electrochemically active and fully reversible in participating in the charge compensation during cycling. Moreover, the active lattice O can be significantly stabilized by introducing the undesired surface Li-Co antisites, which also play an effective role in accommodating the internal stress induced by volume changes. These findings effectively bridge the structural changes with the Li+/e- migration kinetics to elucidate the degradation of LiCoO2 cathode upon delithiation, demonstrating a rewarding avenue for improving the electrochemical performance of LiCoO2 itself and developing high energy density cathodes for the battery community as well.

4.
ACS Appl Mater Interfaces ; 11(27): 24122-24131, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187622

RESUMO

Although the layered P2-type Na0.67Ni0.33Mn0.67O2 materials show high discharge voltage and specific capacity, they suffer from severe structural instabilities and surface reaction upon Na exchange for sodium-ion batteries (SIBs). Therefore, it is quite necessary to reveal the underlying structural evolution mechanism and diffusion kinetics to improve the structural/electrochemical stability for application in SIBs. Here, we synthesize a P2-type Na0.78Al0.05Ni0.33Mn0.60O2 material by a small dose of Al replacing the Mn, aiming at enhancing the structural stability without sacrificing the average discharge voltage and theoretical capacity. The etching X-ray photoelectron spectroscopy and energy-dispersive X-ray mapping/line scan results indicate that the Al doping induces dual effects of the Al2O3 surface coating and the bulk lattice doping, which efficiently suppress the accumulation of structural irreversible changes from P2 to O2, the volume changes, and surface reactions at high voltage. Obvious improvements are further found on the diffusion kinetics of Na ions as well as the decrease of overall voltage polarization. Interestingly, the dual effects of Al doping lead to the significant increase of capacity retention after 50 cycles and improvement of rate capability compared with the undoped counterpart between 2.0 and 4.5 V. Hence, this work sheds new light on stabilizing the P2-Na-Ni-Mn-O materials, which provides a rewarding avenue to develop better SIBs.

5.
J Phys Chem Lett ; 9(18): 5567-5573, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30198723

RESUMO

The electrochemical insertion of Li into graphite initiates a series of thermodynamic and kinetic processes. An in-depth understanding of this phenomenon will deepen the knowledge of electrode material design and optimize rechargeable Li batteries. In this context, the phase transition from dense stage II (LiC12) to stage I (LiC6) was comprehensively elucidated in a graphite anode via both experimental characterizations and first-principles calculations. The results indicate that, although the transition from stage II to stage I is thermodynamically allowed, the process is kinetically prohibited because Li ions tend to cluster into stage compounds rather than form a solid solution. Additionally, the phase transitions involve at least three intermediate structures (1T, 2H, and 3R) before reaching the LiC6 (stage I) phase. These findings provide new insights into the electrochemical behavior of graphite and the electrode process kinetics for rechargeable Li batteries.

6.
ACS Appl Mater Interfaces ; 9(3): 2806-2814, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28025884

RESUMO

Nanotechnology and carbon coating have been applied to silicon anodes to achieve excellent lithium-ion batteries, but the exclusive influence of carbon coating on solid-electrolyte interphase (SEI) formation is difficult to exhibit distinctly because of the impurity and morphological irregularity of most nanostructured anodes. Here, we design a silicon nanocone-carbon (SNC-C) composite structure as a model anode to demonstrate the significant influences of carbon coating on SEI formation and electrochemical performance, unaffectedly as a result of pure electrode component and distinctly due to regular nanocone morphology. As demonstrated by morphological and elemental analysis, compared to the SNC electrode, the SNC-C electrode maintains a thinner SEI layer (∼10 nm) and more stable structure during cycling as well as longer cycle life (>725 cycles), higher Coulombic efficiency (>99%), and lower electrode polarization. This well-defined structure clearly shows the interface stability attributed to carbon coating and is promising in fundamental research of the silicon anode.

7.
Acta Chim Slov ; 63(3): 560-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27640382

RESUMO

The electronic and ionic conductivity of the LiF-Ti nanocomposite films prepared by the co-sputtering have been investigated by the method of impedance spectrum (IS), current-voltage curves (IV) and isothermal transient ionic current (ITIC) measurements. It is found that the ionic conductivity of the obtained LiF-Ti nanocomposite film is very low. After electrochemical and chemical lithiation, ionic conductivities of the lithiated composite films are increased to be 10-3 and 10-4 S/cm separately. This phenomenon indicates that the phase boundary between LiF and Ti could be the ionic conducting channels for external lithium in the LiF-Ti nanocomposite. Our results suggest a new strategy to design ionic or mixed ionic conductor.

8.
Nanoscale ; 7(17): 7651-8, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25833041

RESUMO

Thickness, homogeneity and coverage of the surface passivation layer on Si anodes for Li-ion batteries have decisive influences on their cyclic performance and coulombic efficiency, but related information is difficult to obtain, especially during cycling. In this work, a well-defined silicon nanocone (SNC) on silicon wafer sample has been fabricated as a model electrode in lithium ion batteries to investigate the growth of surface species on the SNC electrode during cycling using ex situ scanning electronic microscopy. It is observed that an extra 5 µm thick layer covers the top of the SNCs after 25 cycles at 0.1 C. This top layer has been proven to be a solid electrolyte interphase (SEI) layer by designing a solid lithium battery. It is noticed that the SEI layer is much thinner at a high rate of 1 C. The cyclic performance of the SNCs at 1 C looks much better than that of the same electrode at 0.1 C in the half cell. Our findings clearly demonstrate that the formation of the thick SEI on the naked nanostructured Si anode during low rate cycling is a serious problem for practical applications. An in depth understanding of this problem may provide valuable guidance in designing Si-based anode materials.

9.
Faraday Discuss ; 176: 109-24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25406865

RESUMO

Rechargeable metallic lithium batteries are the ultimate solution to electrochemical storage due to their high theoretical energy densities. One of the key technological challenges is to control the morphology of metallic lithium electrode during electrochemical dissolution and deposition. Here we have investigated the morphology change of metallic lithium electrode after charging and discharging in nonaqueous batteries by ex situ SEM techniques from a top view. Formation of the hole structure after lithium dissolution and the filling of dendrite-like lithium into the holes has been observed for the first time. In addition, an in situ SEM investigation using an all-solid Li/Li(2)O/super aligned carbon nanotube set-up indicates that lithium ions could diffuse across through the surface oxide layer and grow lithium dendrites after applying an external electric field. The growth of lithium dendrites can be guided by electron flow when the formed lithium dendrite touches the carbon nanotube.

10.
Phys Chem Chem Phys ; 16(26): 13229-38, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24869920

RESUMO

The microstructure and mechanical properties of the solid electrolyte interphase (SEI) in non-aqueous lithium ion batteries are key issues for understanding and optimizing the electrochemical performance of lithium batteries. In this report, the three-dimensional (3D) multi-layered structures and the mechanical properties of the SEI formed on a silicon anode material for next generation lithium ion batteries have been visualized directly for the first time, through a scanning force spectroscopy method. The coverage of the SEI on silicon anodes is also obtained through 2D projection plots. The effects of temperature and the function of additives in the electrolyte on the SEI can be understood accordingly. A modified model about dynamic evolution of the SEI on the silicon anode material is also proposed, which aims to explain why the SEI is very thick and how the multi-layered structure is formed and decomposed dynamically.

11.
Nanotechnology ; 24(42): 424011, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24067781

RESUMO

Electrochemical behaviors of nano-textured silicon thin film (NTSTF) coated with Al2O3 or Cu layers as anodes for lithium-ion batteries have been investigated. The cyclic performance of NTSTF electrodes is superior to dense Si thin films. The NTSTF with a 5 nm thick Cu coating layer shows superior cyclic performance and rate performance to other NTSTF samples. The volume changes of NTSTF electrodes after the first cycle and the tenth cycle have been investigated. This series of electrodes shows an anisotropic volume variation: the height does not change but the diameter does expand. This finding shows the feasibility of dealing with the vertical expansion and contraction of Si-based powder electrodes in Li-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...