Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 6(1): 133, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33298889

RESUMO

In mammalian early embryos, the transition from maternal to embryonic control of gene expression requires timely degradation of a subset of maternal mRNAs (MRD). Recently, zygotic genome activation (ZGA)-dependent MRD has been characterized in mouse 2-cell embryo. However, in early embryos, the dynamics of MRD is still poorly understood, and the maternal factor-mediated MRD before and along with ZGA has not been investigated. Argonaute 2 (Ago2) is highly expressed in mouse oocyte and early embryos. In this study, we showed that Ago2-dependent degradation involving RNA interference (RNAi) and RNA activation (RNAa) pathways contributes to the decay of over half of the maternal mRNAs in mouse early embryos. We demonstrated that AGO2 guided by endogenous small interfering RNAs (endosiRNAs), generated from double-stranded RNAs (dsRNAs) formed by maternal mRNAs with their complementary long noncoding RNAs (CMR-lncRNAs), could target maternal mRNAs and cooperate with P-bodies to promote MRD. In addition, we also showed that AGO2 may interact with small activating RNAs (saRNAs) to activate Yap1 and Tead4, triggering ZGA-dependent MRD. Thus, Ago2-dependent degradation is required for timely elimination of subgroups of maternal mRNAs and facilitates the transition between developmental states.

2.
Theriogenology ; 135: 19-24, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31189122

RESUMO

Approximately 40% of mammalian genome is made of transposable elements (TEs), and during specific biological processes, such as gametogenesis, they may be activated by global demethylation, so strict silencing mechanism is indispensable for genomic stability. Here, we performed small RNA-seq on Dicer1 knockdown (KD) oocytes in pig, and observed short interspersed nuclear elements 1B (SINE1B) derived endogenous small interfering RNAs (endo-siRNAs), termed SINE1B-siRNAs, were significantly decreased and their biogenesis was dependent on Dicer1 and transcript of SINE1B. Furthermore, by injection of mimics and inhibitors of the SINE1B-siRNAs into germinal vesicle-stage (GV-stage) oocytes, we found the maturation rate was significantly decreased by SINE1B-siRNAs, indicating the SINE1B-siRNAs are indispensible for in vitro maturation (IVM) of porcine oocyte. To figure out the mechanism, we checked the expression pattern and DNA methylation status of SINE1B during IVM of porcine oocytes, and demonstrated the SINE1B-siRNAs could repress SINE1B expression induced by hypomethylation at a post-transcriptional level. Our results suggest that during gametogenesis when the erasure of DNA methylation occurs, endo-siRNAs act as a chronic response to limit retrotransposon activation.


Assuntos
Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/fisiologia , Elementos Nucleotídeos Curtos e Dispersos/fisiologia , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , RNA Interferente Pequeno , Retroelementos , Elementos Nucleotídeos Curtos e Dispersos/genética , Suínos
3.
Plant Sci ; 259: 1-11, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28483049

RESUMO

Plastid ribosome proteins (PRPs) are important components for chloroplast biogenesis and early chloroplast development. Although it has been known that chloroplast ribosomes are similar to bacterial ones, the precise molecular function of ribosomal proteins remains to be elucidated in rice. Here, we identified a novel rice mutant, designated tcd11 (thermo-sensitive chlorophyll-deficient mutant 11), characterized by the albino phenotype until it died at 20°C, while displaying normal phenotype at 32°C. The alteration of leaf color in tcd11 mutants was aligned with chlorophyll (Chl) content and chloroplast development. The map-based cloning and molecular complementation showed that TCD11 encodes the ribosomal small subunit protein S6 in chloroplasts (RPS6). TCD11 was abundantly expressed in leaves, suggesting its different expressions in tissues. In addition, the disruption of TCD11 greatly reduced the transcript levels of certain chloroplasts-associated genes and prevented the assembly of ribosome in chloroplasts at low temperature (20°C), whereas they recovered to nearly normal levels at high temperature (32°C). Thus, our data indicate that TCD11 plays an important role in chloroplast development at low temperature. Upon our knowledge, the observations from this study provide a first glimpse into the importance of RPS6 function in rice chloroplast development.


Assuntos
Temperatura Baixa , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Cloroplastos/metabolismo , Cloroplastos/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plastídeos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...