Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
J Adv Res ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38724006

RESUMO

INTRODUCTION: Ovarian cancer (OC) is known for its high mortality rate. Although sodium citrate has anti-tumor effects in various cancers, its effect and mechanism in OC remain unclear. OBJECTIVES: To analyze the inhibitory effect of sodium citrate on ovarian cancer cells and the underlying mechanism. METHODS: Cell apoptosis was examined by TUNEL staining, flow cytometry, and ferroptosis was examined intracellular Fe2+, MDA, LPO assays, respectively. Cell metabolism was examined by OCR and ECAR measurements. Immunoblotting and immunoprecipitation were used to elucidate the mechanism. RESULTS: This study suggested that sodium citrate not only promoted ovarian cancer cell apoptosis but also triggeredferroptosis, manifested as elevated levels of Fe2+, LPO, MDA andlipid ROS production. On one hand, sodium citrate treatment led to a decrease of Ca2+ content in the cytosol by chelatingCa2+, which further inhibited the Ca2+/CAMKK2/AKT/mTOR signaling, thereby suppressing HIF1α-dependent glycolysis pathway and inducing cell apoptosis. On the other hand, the chelation of Ca2+ by sodium citrate resulted in inactivation of CAMKK2 and AMPK, leading to increase of NCOA4-mediated ferritinophagy, causing increased intracellular Fe2+ levels. More importantly, the inhibition of Ca2+/CAMKK2/AMPK signaling pathway reduced the activity of the MCU and Ca2+ concentration within the mitochondria, resulting in an increase in mitochondrial ROS. Additionally, metabolomic analysis indicated that sodium citrate treatment significantly increased de novo lipid synthesis. Altogether, these factors contributed to ferroptosis. As expected, Ca2+ supplementation successfully reversed the cell death and decreased tumor growth induced by sodium citrate. Inspiringly, it was found that coadministration of sodium citrate increased the sensitivity of OC cells to chemo-drugs. CONCLUSION: These results revealed that the sodium citrate exerted its anti-cancer activity by inhibiting Ca2+/CAMKK2-dependent cell apoptosis and ferroptosis. Sodium citrate will hopefully serve as a prospective compound for OC treatment and for improvingthe efficacy of chemo-drugs.

2.
Adv Sci (Weinh) ; : e2309639, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682443

RESUMO

Targeting "undruggable" targets with intrinsically disordered structures is of great significance for the treatment of disease. The transcription factor c-Myc controls global gene expression and is an attractive therapeutic target for multiple types of cancers. However, due to the lack of defined ligand binding pockets, targeted c-Myc have thus far been unsuccessful. Herein, to address the dilemma of lacking ligands, an efficient and high throughput aptamer screening strategy is established, named polystyrene microwell plate-based systematic evolution of ligands by exponential enrichment (microwell-SELEX), and identify the specific aptamer (MA9C1) against c-Myc. The multifunctional aptamer-based Proteolysis Targeting Chimeras (PROTAC) for proteolysis of the c-Myc (ProMyc) is developed using the aptamer MA9C1 as the ligand. ProMyc not only significantly degrades c-Myc by the ubiquitin-proteasome system, but also reduces the Max protein, synergistically inhibiting c-Myc transcriptional activity. Combination of the artificial cyclization and anti-PD-L1 aptamer (PA1)-based delivery system, circular PA1-ProMyc chimeras achieve tumor regression in the xenograft tumor model, laying a solid foundation for the development of efficacious c-Myc degrader for the clinic. Therefore, this aptamer-based degrader provides an invaluable potential degrader in drug discovery and anti-tumor therapy, offering a promising degrader to overcome the challenge of targeting intractable targets.

3.
Plant Cell ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552172

RESUMO

S-acylation is a reversible post-translational modification catalyzed by protein S-acyltransferases (PATs), and acyl protein thioesterases (APTs) mediate de-S-acylation. Although many proteins are S-acylated, how the S-acylation cycle modulates specific biological functions in plants is poorly understood. In this study, we report that the S-acylation cycle of transcription factor MtNAC80 is involved in the Medicago truncatula cold stress response. Under normal conditions, MtNAC80 localized to membranes through MtPAT9-induced S-acylation. In contrast, under cold stress conditions, MtNAC80 translocated to the nucleus through de-S-acylation mediated by thioesterases such as MtAPT1. MtNAC80 functions in the nucleus by directly binding the promoter of the glutathione S-transferase gene MtGSTU1 and promoting its expression, which enables plants to survive under cold stress by removing excess malondialdehyde and H2O2. Our findings reveal an important function of the S-acylation cycle in plants and provide insight into stress response and tolerance mechanisms.

4.
Adv Sci (Weinh) ; 11(11): e2305893, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38189580

RESUMO

The integrity of the intestinal mucosal barrier is crucial for protecting the intestinal epithelium against invasion by commensal bacteria and pathogens, thereby combating colitis. The investigation revealed that the absence of TSP50 compromised the integrity of the intestinal mucosal barrier in murine subjects. This disruption facilitated direct contact between intestinal bacteria and the intestinal epithelium, thereby increasing susceptibility to colitis. Mechanistic analysis indicated that TSP50 deficiency in intestinal stem cells (ISCs) triggered aberrant activation of the TGF-ß signaling pathway and impeded the differentiation of goblet cells in mice, leading to impairment of mucosal permeability. By inhibiting the TGF-ß pathway, the functionality of the intestinal mucosal barrier is successfully restored and mitigated colitis in TSP50-deficient mice. In conclusion, TSP50 played a crucial role in maintaining the intestinal mucosal barrier function and exhibited the preventive effect against the development of colitis by regulating the TGF-ß signaling pathway.


Assuntos
Colite , Animais , Humanos , Camundongos , Colite/induzido quimicamente , Colite/prevenção & controle , Mucosa Intestinal , Intestinos , Fator de Crescimento Transformador beta/metabolismo
5.
Int Wound J ; 21(1): e14401, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709499

RESUMO

BACKGROUND: Dressing change is the most important part of postoperative wound care. The aim of this study was to evaluate whether a more effective, simple and less painful method of dressing change for anal fistulas could be found without the need for debridement and packing. Data related to postoperative recovery were recorded at postoperative days 3, 7, 14, 21 and 180. METHODS: In this experiment, 76 subjects diagnosed with high anal fistula were randomly divided into a simplified dressing change (SDC) group and a traditional debridement dressing change(TDDC) group according to a ratio of 1:1. RESULTS: The SDC group had significantly fewer pain scores, bleeding rates, dressing change times, inpatient days and lower average inpatient costs than the TDDC group. There were no significant differences in wound healing time, area and depth and Wexner score between the two groups. CONCLUSIONS: Studies have shown that the use of simplified dressing changes does not affect cure or recurrence rates, but significantly reduces dressing change times and pain during changes, reducing patient inpatient length of stay and costs.


Assuntos
Fístula Retal , Humanos , Estudos Prospectivos , Fístula Retal/cirurgia , Cicatrização , Dor , Bandagens , Resultado do Tratamento
6.
iScience ; 26(10): 107752, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37954141

RESUMO

Symbiotic nitrogen fixation is a complex process in which legumes interact with rhizobia under nitrogen starvation. In this study, we found that myotubularin phosphatase (MtMP) is mainly expressed in roots and nodules in Medicago truncatula. MtMP promotes autophagy by dephosphorylating PtdIns3P on autophagosomes. The mp mutants inoculated with rhizobia showed a significant reduction in nitrogenase activity and significantly higher number of mitochondria than those of wild-type plants under nitrogen starvation, indicating that MtMP is involved in mitophagy of the infection zone. Mitophagy may provide carbon skeletons and nitrogen for the development of bacteroids and the reprogramming of infected cells. In conclusion, we found, for the first time, that myotubularin phosphatase is involved in autophagy in plants. MtMP-involved autophagy plays an active role in symbiotic nitrogen fixation. These results deepen our understanding of symbiotic nitrogen fixation.

7.
Front Med (Lausanne) ; 10: 1276030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954556

RESUMO

We report the case of a female who was cured of hemorrhagic esophageal varices caused by paroxysmal nocturnal hemoglobinuria (PNH) through transjugular intrahepatic portosystemic shunt (TIPS) treatment. PNH complicated by portal vein and visceral veins thrombosis without hepatic veins is extremely rare, and as such, it is easy to incorrectly treat due to lack of awareness. Hemorrhagic esophageal varices due to PNH with PVT have been reported in one case in 1974, and here, we report the second.

8.
Biomater Sci ; 12(1): 199-205, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37982447

RESUMO

Bacterial infections with emerging resistance to antibiotics require urgent development of antibacterial agents with new core skeletons. Recently, a series of antibacterial agents have been reported based on positively charged organic groups, such as ammonium, guanidine, and phosphonium groups, which can selectively bind and destroy negatively charged bacterial membranes. To achieve imaging-guided precise antibacterial therapy, these positively charged organic groups usually require further decoration with imaging modalities, such as fluorescence. However, most fluorophores with electron-closed shell structures usually suffer from tedious synthetic procedures for preparation. We herein prepare a series of positively charged and deep-red fluorescent supramolecular pyrrole radical cations (P˙+-CB[7]) based on the simple mixing of pyrroles and CB[7] in water under air. The readily available deep-red fluorescent P˙+-CB[7] can not only be used for selective imaging and killing of live Gram-positive bacteria with excellent biocompatibility, but also for imaging of dead Gram-negative bacteria killed by drugs and in vivo monitoring of phagocytosis of bacteria by innate immune cells in zebrafish. It is believed that the deep-red fluorescent pyrrole radical cations as a new core skeleton are promising in bacterial theranostics.


Assuntos
Medicina de Precisão , Pirróis , Animais , Peixe-Zebra , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Cátions/química
9.
J Appl Genet ; 64(3): 531-543, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37540462

RESUMO

The purpose of this study was to investigate the role of circ_0000119 on CC progression and its molecular mechanism. The expression levels of circ_0000119, miR-433-3p, and p21-activated kinase 2 (PAK2) in CC tissues and cell lines were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was assessed using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay and colony formation assay. Cell cycle and apoptosis were assessed by flow cytometry. Cell migration and invasive ability were examined by Transwell assays. Downstream binding targets of circ_0000119 were predicted by online bioinformatics tools and confirmed by dual luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay, and RNA pull-down assay. The role of circ_0000119/miR-433-3p/PAK2 axis in regulating the CC process was explored by rescue experiments. A xenograft model was constructed to further determine the effect of circ_0000119 on CC tumor growth in vivo. Immunohistochemistry (IHC) assay was conducted for Ki67 expression. Circ_0000119 was aberrantly upregulated in CC tissues and cell lines. Knockdown of circ_0000119 inhibited CC cell proliferation, cell cycle progress, migration, invasion, and promoted apoptosis of CC cells. MiR-433-3p was a binding target of circ_0000119, and PAK2 was a downstream gene of miR-433-3p. MiR-433-3p inhibition reversed the inhibitory effect of silencing circ_0000119 on CC progression. In addition, PAK2 overexpression reversed the effect of miR-433-3p on CC progression. PAK2 expression was regulated by circ_0000119 and miR-433-3p. Moreover, circ_0000119 knockdown reduced tumor growth of CC in vivo. Circ_0000119 was upregulated in CC, and circ_0000119 knockdown suppressed CC malignant development through the miR-433-3p/PAK2 axis.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Humanos , Feminino , RNA Circular/genética , Quinases Ativadas por p21/genética , Neoplasias do Colo do Útero/genética , Transformação Celular Neoplásica , Movimento Celular/genética , MicroRNAs/genética , Linhagem Celular Tumoral
11.
Mol Plant ; 16(9): 1396-1412, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37598296

RESUMO

Nodulation is an energy-expensive behavior driven by legumes by providing carbon sources to bacteroids and obtaining nitrogen sources in return. The energy sensor sucrose nonfermenting 1-related protein kinase 1 (SnRK1) is the hub of energy regulation in eukaryotes. However, the molecular mechanism by which SnRK1 coordinates the allocation of energy and substances during symbiotic nitrogen fixation (SNF) remains unknown. In this study, we identified the novel legume-specific SnRK1α4, a member of the SnRK1 family that positively regulates SNF. Phenotypic analysis showed that nodule size and nitrogenase activity increased in SnRK1α4-overexpressing plants and decreased significantly in snrk1α4 mutants. We demonstrated that a key upstream kinase involved in nodulation, Does Not Make Infection 2 (DMI2), can phosphorylate SnRK1α4 at Thr175 to cause its activation. Further evidence clarified that SnRK1α4 phosphorylates the malate dehydrogenases MDH1/2 to promote malate production in the cytoplasm, supplying carbon sources to bacteroids. Therefore, our findings reveal an essential role of the DMI2-SnRK1α4-MDH pathway in supplying carbon sources to bacteroids for SNF and provide a new module for constructing cereal crops with SNF.


Assuntos
Fabaceae , Malatos , Fixação de Nitrogênio , Carbono
12.
J Clin Transl Hepatol ; 11(4): 908-917, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37408804

RESUMO

Background and Aims: To investigate the safety and efficacy of double plasma molecular adsorption system (DPMAS) with sequential low-dose plasma exchange (LPE) in treating early hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). Methods: Clinical data of patients with HBV-ACLF were prospectively collected, including patients in a DPMAS with sequential LPE (DPMAS+LPE) group and those in a standard medical treatment (SMT) group. The primary endpoint was death or liver transplantation (LT) at 12 weeks of follow-up. Propensity-score matching was performed to control the effects of confounding factors on prognosis between the two groups. Results: After 2 weeks, total bilirubin, alanine aminotransferase, blood urea nitrogen levels, and Chinese Group on the Study of Severe Hepatitis B score, were significantly lower in the DPMAS+LPE group than those in the SMT group (p<0.05). After 4 weeks, laboratory parameters of the two groups were similar. The cumulative survival rate of the DPMAS+LPE group was significantly higher than that of the SMT group at 4 weeks (97.9% vs. 85.4%, p=0.027), but not at 12 weeks (85.4% vs. 83.3%, p=0.687). Cytokine levels were significantly lower in 12-week survival group than in the death-or-LT group (p<0.05). Functional enrichment analysis showed that downregulated cytokines were mainly involved in positive regulation of proliferation and activation of lymphocytes and monocytes, regulation of immune effect response, regulation of endotoxin response, and glial cell proliferation. Conclusion: DPMAS+LPE significantly improved the 4-week cumulative survival rate, and ameliorated the inflammatory response in patients. DPMAS+LPE may be a promising modality for patients with early HBV-ACLF.

13.
Micromachines (Basel) ; 14(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37512661

RESUMO

In advanced packaging technology, the micro bump has become an important means of chip stacking and wafer interconnection. The reliability of micro bumps, which plays an important role in mechanical support, electrical connection, signal transmission and heat dissipation, determines the quality of chip packaging. Surface morphological defects are one of the main factors affecting the reliability of micro bumps, which are closely related to materials and bonding process parameters. In this paper, the electrodeposition process of preparing gold bumps is simulated at the atomic scale using the Kinetic Monte Carlo method. The differences in surface morphology and roughness of the plated layer are studied from a microscopic perspective under different deposition parameters. The results show that the gold micro bumps prepared by electrodeposition have better surface quality under conditions of lower deposition voltage, lower ion concentration and higher plating temperature, which can provide significant guidance for engineering applications.

14.
J Gastrointest Oncol ; 14(3): 1626-1634, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37435224

RESUMO

Background: Anal fistula is an anorectal infectious disease caused by a perianal abscess or perianal disease. Accurate anorectal examinations are of great significance. The two-finger digital rectal examination (TF-DRE) has been used in clinical practice, with a lack of comprehensive research on the value of the TF-DRE in the diagnosis of anal fistula. This study will compare the difference in the diagnostic value of the TF-DRE, traditional digital rectal examination (DRE), and anorectal ultrasonography in the diagnosis of anal fistula. Methods: For patients who meet the inclusion criteria, a TF-DRE will be performed to explore the number and location of the external and internal orifices, the number of fistulas, and the relationship between the fistula and the perianal sphincter. A DRE and anorectal ultrasonography will also be performed, and the same data will be recorded. To make a comparison, the final diagnosis results of the clinicians during the operation will be taken as the gold standard, the accuracy of the TF-DRE in diagnosing anal fistula will be calculated, and the significance of the TF-DRE in the preoperative diagnosis of anal fistula will be studied and analyzed. All the statistical results will be analyzed using SPSS22.0 (IBM, USA), and a P value <0.05 will be considered statistically significant. Discussion: The research protocol details the advantages of the TF-DRE compared to the DRE and anorectal ultrasonography in the diagnosis of anal fistula. This study will provide clinical evidence of the diagnostic value of the TF-DRE in the diagnosis of anal fistula. Currently, there is a lack of high-quality research using scientific methods on this innovative anorectal examination method. This study will provide rigorously designed clinical evidence on the TF-DRE. Registration: Chinese Clinical Trials Registry ChiCTR2100045450.

15.
J Ethnopharmacol ; 316: 116723, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271329

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Depression has become a global public health problem and the development of new highly effective, low-toxicity antidepressants is imminent. Sophora alopecuroides L. is a common medicinal plant, which has therapeutic effect on central nervous system diseases. AIM OF THE STUDY: In this study, the antidepressant effect of total alkaloids (ALK) isolated from Sophora alopecuroides L. was explored and the mechanism was further elucidated. MATERIALS AND METHODS: A primary neuronal injury model was established in vitro by corticosterone. ICR mice were then selected to construct an in vivo model of chronic unpredictable mild stress (CUMS)-induced depression, and the ameliorative effects of ALK on depression were examined by various behavioral tests. The antidepressant molecular mechanism of ALK was subsequently revealed by ELISA, Western blot, immunohistochemistry and Golgi staining. RESULTS: BDNF secretion as well as TrkB and ERK phosphorylated protein levels were found to be improved in primary cortical neurons, along with improved dendritic complexity of neurons. The results of in vivo showed that the depression-like behavior of CUMS-induced mice was reversed after 2 weeks of continuous gavage administration of ALK, and the neurotransmitter levels in the plasma of mice were increased. Moreover, the expression levels of key proteins of BDNF-AKT-mTOR pathway and the complexity of neuronal dendrites were improved in the prefrontal cortex of mice. CONCLUSIONS: These findings indicate that ALK of Sophora alopecuroides L. can effectively improve the depressive phenotype of mice, possibly by promoting the expression of BDNF in prefrontal cortex, activating the downstream AKT/mTOR signal pathway, and ultimately enhancing neuronal dendritic complexity.


Assuntos
Alcaloides , Sophora , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos Endogâmicos ICR , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Transdução de Sinais , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/farmacologia , Estresse Psicológico/tratamento farmacológico , Hipocampo
16.
Asia Pac J Clin Nutr ; 32(2): 215-226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37382319

RESUMO

BACKGROUND AND OBJECTIVES: To investigate the capacity of clinical nutrition services in secondary and tertiary hospitals in the Sichuan Province, China. METHODS AND STUDY DESIGN: Convenience sampling was used. E-questionnaires were distributed to all eligible medical institutions in Sichuan through the official network of provincial and municipal clinical nutrition quality control centers. The data obtained were sorted in Microsoft Excel and analyzed by SPSS. RESULTS: A total of 519 questionnaires were returned, of which 455 were valid. Only 228 hospitals were accessible to clinical nutrition services, of which 127 hospitals had independently set up clinical nutrition departments (CNDs). The ratio of clinical nutritionists to beds was 1:214. During the last decade, the rate of constructing new CNDs was maintained at approximately 5 units/year. A total of 72.4% of hospitals managed their clinical nutrition units as part of their medical technology departments. The specialist number ratio of senior, associate, intermediate and junior is approximately 1:4:8:10. There were 5 common charges for clinical nutrition. CONCLUSIONS: The sample representation was limited, and the capacity of clinical nutrition services may have been overestimated. Secondary and tertiary hospitals in Sichuan are currently in the second high tide of department establishment, with a positive trend of departmental affiliation standardization and a basic formation of a talent echelon.


Assuntos
Estado Nutricional , Projetos de Pesquisa , Humanos , Centros de Atenção Terciária , China
17.
Nat Commun ; 14(1): 2807, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198152

RESUMO

The adjustment of cellular redox homeostasis is essential in when responding to environmental perturbations, and the mechanism by which cells distinguish between normal and oxidized states through sensors is also important. In this study, we found that acyl-protein thioesterase 1 (APT1) is a redox sensor. Under normal physiological conditions, APT1 exists as a monomer through S-glutathionylation at C20, C22 and C37, which inhibits its enzymatic activity. Under oxidative conditions, APT1 senses the oxidative signal and is tetramerized, which makes it functional. Tetrameric APT1 depalmitoylates S-acetylated NAC (NACsa), and NACsa relocates to the nucleus, increases the cellular glutathione/oxidized glutathione (GSH/GSSG) ratio through the upregulation of glyoxalase I expression, and resists oxidative stress. When oxidative stress is alleviated, APT1 is found in monomeric form. Here, we describe a mechanism through which APT1 mediates a fine-tuned and balanced intracellular redox system in plant defence responses to biotic and abiotic stresses and provide insights into the design of stress-resistant crops.


Assuntos
Glutationa , Lactoilglutationa Liase , Medicago truncatula , Núcleo Celular/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Lactoilglutationa Liase/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Oxirredução , Estresse Oxidativo , Tioléster Hidrolases
18.
Int J Biol Sci ; 19(5): 1579-1596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056927

RESUMO

The decreased expression and dysfunction of glucose transporter 4 (GLUT4), the insulin-responsive glucose transporter, are closely related to the occurrence of insulin resistance (IR). To improve the expression of GLUT4 may represent a promising strategy to prevent and treat IR and type 2 diabetes (T2DM). Here, we demonstrate that the natural compound tectorigenin (TG) enhances GLUT4 expression, glucose uptake and insulin responsiveness via activating AMP-activated protein kinase (AMPK)/myocyte enhancer factor 2 (MEF2) signaling in both normal and IR skeletal muscle cells and tissues. Accordingly, prophylactic and therapeutic uses of TG can significantly ameliorate IR and hyperglycemia in T2DM mice. Mechanistically, we identify protein kinase A catalytic subunit α (PKACα) as the target of TG to increase GLUT4 expression and TG-PKACα binding promotes the dissociation of PKACα from the regulatory subunits, leading to the activation of PKA/AMPK signaling. PKACα knockdown in local quadriceps muscles almost completely abolished the therapeutic effects of TG on IR and T2DM, as well as the enhancement on AMPK signaling and GLUT4 expression in skeletal muscle. This study supports TG as a new drug candidate to treat IR and its related diseases, but also enriches our knowledge of PKA signaling in glucose metabolism in skeletal muscle.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Animais , Resistência à Insulina/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo
19.
Mol Cell Biochem ; 478(12): 2891-2906, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36944795

RESUMO

Gastric adenocarcinoma (GAC) is one of the world's most lethal malignant tumors. It has been established that the occurrence and progression of GAC are linked to molecular changes. However, the pathogenesis mechanism of GAC remains unclear. In this study, we sequenced 6 pairs of GAC tumor tissues and adjacent normal tissues and collected GAC gene expression profile data from the TCGA database. Analysis of this data revealed 465 differentially expressed genes (DEGs), of which 246 were upregulated and 219 were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were observably enriched in ECM-receptor interaction, protein digestion and absorption, and gastric acid secretion pathways. Six key genes (MATN3, COL1A1, COL5A2, P4HA3, SERPINE1 and VCAN) associated with poor GAC prognosis were screened from the protein‒protein interaction (PPI) network by survival analysis, and P4HA3 and MATN3 have rarely been reported to be associated with GAC. We further analyzed the function of P4HA3 in the GAC cell line SGC-7901 by RT‒qPCR, MTT, flow cytometry, colony formation, wound healing, Transwell and western blot assays. We found that P4HA3 was upregulated in the SGC-7901 cell line versus normal control cells. The outcomes of the loss-of-function assay illustrated that P4HA3 significantly enhanced the ability of GAC cells to proliferate and migrate. This study provides a new basis for the selection of prognostic markers and therapeutic targets for GAC.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Transcriptoma , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Prognóstico , Adenocarcinoma/patologia , Neoplasias Gástricas/metabolismo , Regulação Neoplásica da Expressão Gênica , Biologia Computacional , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo
20.
J Transl Med ; 21(1): 145, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829227

RESUMO

BACKGROUND: The realization of the "microbiota-gut-brain" axis plays a critical role in neuropsychiatric disorders, particularly depression, is advancing rapidly. Matrine is a natural bioactive compound, which has been found to possess potential antidepressant effect. However, the underlying mechanisms of regulation of the "microbiota-gut-brain" axis in the treatment of depression by oral matrine remain elusive. METHODS: Its antidepressant effects were initially evaluated by behavioral tests and relative levels of monoamine neurotransmitters, and matrine has been observed to attenuate the depression-like behavior and increase neurotransmitter content in CUMS-induced mice. Subsequently, studies from the "gut" to "brain" were conducted, including detection of the composition of gut microbiota by 16S rRNA sequencing; the metabolomics detection of gut metabolites and the analysis of differential metabolic pathways; the assessment of relative levels of diamine oxidase, lipopolysaccharide, pro-inflammatory cytokines, and brain-derived neurotrophic factor (BDNF) by ELISA kits or immunofluorescence. RESULTS: Matrine could regulate the disturbance of gut microbiota and metabolites, restore intestinal permeability, and reduce intestinal inflammation, thereby reducing the levels of pro-inflammatory cytokines in peripheral blood circulation and brain regions, and ultimately increase the levels of BDNF in brain. CONCLUSION: Matrine may ameliorate CUMS-induced depression in mice by modulating the "microbiota-gut-brain" axis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Camundongos , Animais , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Matrinas , Eixo Encéfalo-Intestino , RNA Ribossômico 16S , Antidepressivos/farmacologia , Citocinas/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...