Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170660, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325492

RESUMO

Soil carbon and nitrogen cycles affect agricultural production, environmental quality, and global climate. Iron (Fe), regarded as the most abundant redox-active metal element in the Earth's crust, is involved in a biogeochemical cycle that includes Fe(III) reduction and Fe(II) oxidation. The redox reactions of Fe can be linked to the carbon and nitrogen cycles in soil in various ways. Investigating the transformation processes and mechanisms of soil carbon and nitrogen species driven by Fe redox can provide theoretical guidance for improving soil fertility, and addressing global environmental pollution as well as climate change. Although the widespread occurrence of these coupling processes in soils has been revealed, explorations of the effects of Fe redox on soil carbon and nitrogen cycles remain in the early stages, particularly when considering the broader context of global climate and environmental changes. The key functional microorganisms, mechanisms, and contributions of these coupling processes to soil carbon and nitrogen cycles have not been fully elucidated. Here, we present a systematic review of the research progress on soil carbon and nitrogen cycles mediated by Fe redox, including the underlying reaction processes, the key microorganisms involved, the influencing factors, and their environmental significance. Finally, some unresolved issues and future perspectives are addressed. This knowledge expands our understanding of the interconnected cycles of Fe, carbon and nitrogen in soils.

2.
Ying Yong Sheng Tai Xue Bao ; 34(3): 805-814, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087665

RESUMO

Tea plantations are an important N2O source. Fertilizer-induced N2O emission factors of tea plantations are much higher than other upland agricultural ecosystems. According to the basic information on characteristics and knowledge of N2O emissions from tea plantations around the world, we comprehensively reviewed N2O emission characteristics, production process, influencing factors, and reduction measures from tea plantations. The global means of ambient N2O emission and N2O emission stimulated by nitrogen fertilizer application from tea plantations were (2.68±2.92) kg N·hm-2 and (11.29±9.45) kg N·hm-2, respectively. The fertilizer-induced N2O emission factor in tea plantations (2.2%±2.1%) was much higher than the IPCC-estimated N2O emission factor for agricultural land (1%). N2O emission from tea plantation soil (a typical acid soil) were mainly produced during nitrification and denitrification, with denitrification being dominant. N2O emission from tea plantations were significantly related to the amount of fertilizer application. Other factors, such as fertilizer type, could also affect soil N2O emissions in tea plantations. The main reduction methods of N2O emission from tea plantations included optimizing the amount and type of fertilizer, amending biochar, and rationally using nitrification inhibitors. In future, we should strengthen in-situ observations of soil N2O emission from tea plantations at both temporal and spatial scales, combine lab incubation and field studies to elucidate the mechanisms underling tea plantation soil N2O emissions, and use a data-model fusion approach to reduce uncertainties in the estimation of global N2O emission. These would provide theoretical support and practical guidance for reasonable N2O emission reduction in tea plantations.


Assuntos
Fertilizantes , Óxido Nitroso , Óxido Nitroso/análise , Fertilizantes/análise , Ecossistema , Solo , Agricultura , Nitrogênio/análise , Chá
3.
Sci Total Environ ; 871: 162054, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758703

RESUMO

Tea gardens have been widely documented to be hotspots for nitrogen (N) oxide emissions (i.e., nitrous oxide (N2O) and nitric oxide (NO)). However, a quantitative understanding of N oxide emissions related to different fertilizer regimes and the main controlling factors is lacking. Here, we performed a meta-analysis of 56 peer-reviewed publications on N oxide emissions from global tea gardens over the past three decades. Overall, fertilization increased N2O and NO emissions (p < 0.001) by 584 % and 790 %, respectively. The stimulating effect of fertilizer on N2O and NO emissions was mainly related to high N application rates. Furthermore, organic fertilizer treatment, combined fertilizer treatment, biochar amendment, and inhibitor amendment reduced N2O emissions (p < 0.05) by 63 %, 64 %, 69 %, and 94 %, respectively, relative to chemical fertilizer treatment. For NO emissions, only biochar amendment decreased fertilizer-driven stimulation (by 80 %, p < 0.05). Notably, the dominant factors that influenced fertilizer-induced N2O and NO emissions in tea gardens were fertilization regimes, climatic conditions, and soil properties. On a global scale, fertilization increased mean N2O and NO emissions (p < 0.05) from global tea gardens by 44.5 Gg N yr-1 and 34.3 Gg N yr-1, respectively, whereas compared with no amendment application, inhibitors reduced N2O emissions (p < 0.05) by 32.2 Gg N yr-1 and biochar reduced NO emissions (p < 0.05) by 23.6 Gg N yr-1. Our results suggest that to obtain maximum ecological and economic benefits, appropriate N fertilizer and biochar and inhibitor amendments should be applied for site-specific mitigation purposes, and long-term, multiarea, in situ experiments and microbial mechanism studies should be conducted.

4.
Environ Res ; 213: 113728, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35732203

RESUMO

Soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions are two main greenhouse gases that play important roles in global warming. Studies have shown that microplastics, biochar, and earthworms can significantly affect soil greenhouse gas emissions. However, few studies have explored how their interactions affect soil CO2 and N2O emissions. A mesocosm experiment was conducted to investigate their interactive effects on soil greenhouse gases and soil microbial functional genes in vegetable-growing soil under different incubation times. Biochar alone or combined with microplastics significantly decreased soil CO2 emissions but had no effect on soil N2O emissions. Microplastics and biochar inhibited CO2 emissions and promoted N2O emissions in the soil with earthworms. The addition of microplastics, biochar, and earthworms had significant effects on soil chemical properties, including dissolved organic carbon, ammonia nitrogen, nitrate nitrogen, total nitrogen, and pH. Microplastics and earthworms selectively influenced microbial abundances and led to a fungi-prevalent soil microbial community, while biochar led to a bacteria-prevalent microbial community. The interactions of microplastics, biochar, and earthworms could alleviate the reduction of the bacteria-to-fungi ratio and the abundance of microbial functional genes caused by microplastics and earthworms alone. Microplastics significantly inhibited microorganisms as well as C and N cycling functional genes in earthworm guts, while biochar obviously stimulated them. The influence of the addition of exogenous material on soil greenhouse gas emissions, soil chemical properties, and functional microbes differed markedly with soil incubation time. Our results indicated that biochar is a promising amendment for soil with microplastics or earthworms to simultaneously mitigate CO2 emissions and regulate soil microbial community composition and function. These findings contribute to a better understanding of the interaction effects of microplastics, biochar, and earthworms on soil carbon and nitrogen cycles, which could be used to help conduct sustainable environmental management of soil.


Assuntos
Gases de Efeito Estufa , Oligoquetos , Animais , Dióxido de Carbono/análise , Carvão Vegetal , Microplásticos , Nitrogênio , Óxido Nitroso , Oligoquetos/genética , Plásticos , Solo/química , Verduras
5.
Sci Total Environ ; 815: 152756, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990667

RESUMO

With the continuous increase in shrimp (Litopenaeus vannamei) aquaculture production, the widespread use of antibiotics as a means of preventing and treating diseases has adversely affected the environment, animal health and symbiotic microorganisms in gut environments. At the same time, antibiotic resistance genes (ARGs) are widespread in aquaculture and pose a great threat to aquatic organisms and humans. Therefore, in the present study, the occurrence and distribution of 17 antibiotics, ARGs and mobile genetic elements (MGEs) were detected in the guts of shrimp collected from 12 coastal regions of China. The results showed that sulfadiazine, ciprofloxacin and norfloxacin were detectable in the guts of L. vannamei at all sampling sites. Sul1, sul2, floR and intI-1 were also detected in the guts of L. vannamei at all sampling sites. The total relative abundances of ARGs and MGEs were significantly positively correlated according to Pearson correlation analysis. Sulfonamide resistance genes (sul1 and sul2) were significantly positively correlated with intI-1. These results indicated that MGEs could increase the risk of horizontal gene transfer of ARGs in a gut environment. MGEs are the most important factors promoting the spread of ARGs. Correlation analysis showed that sulfadiazine was significantly positively correlated with sul1 and sul2 and that fluoroquinolone antibiotics were significantly positively correlated with floR, indicating that antibiotics could induce the production of ARGs. Network analysis indicated that Iamia and Alkaliphilus species may harbor the most antibiotic resistance genes, and these bacteria were closely related to the proliferation and spread of ARGs in a gut environment. Antibiotic use and the spread of ARGs in mariculture systems may have negative effects on shrimp and human health. The use of antibiotics should be strictly regulated to control contaminants in mariculture systems, including pathogens and ARGs, thereby reducing potential risks to human health.


Assuntos
Antibacterianos , Penaeidae , Animais , Antibacterianos/farmacologia , Aquicultura , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos
6.
Sci Total Environ ; 806(Pt 3): 151256, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717998

RESUMO

Applying biochar in association with crop residues might optimize costs and effectiveness in the reclamation of saline soils. Here, we explored the potential effects of biochar in association with crop residue amendments on soil greenhouse gas (GHG) emissions, and microbial communities. Previously, we found that soil N2O emission significantly increased with increasing salinity levels followed by cotton straw addition. In the present study, microcosm experiments were performed to investigate the interaction of salinity (0 and 1.2% salt) with the aging of biochar following soil amendments over an incubation period of 80 days. The results indicated that N2O emissions were approximately 5-10 times higher in saline soils than in non-saline soils, and the cumulative N2O emissions following two straw amendments treatment were the highest of all the treatments. Salinity increased the contribution of nitrification to soil N2O emissions stimulated by the cotton straw amendments, and aged biochar performed better in decreasing soil N2O emissions in saline soils than in non-saline soils. In addition, aged biochar increased soil C mineralization and CO2 emissions under saline conditions. Soil CO2 and N2O emissions were affected by both soil abiotic and biotic factors under non-saline and saline conditions. Moreover, much more specific but fewer microbial groups survived and utilized crop residues under saline than non-saline conditions, and aged biochar decreased salt stress in soil microorganisms. These findings indicated that aged biochar and crop residues together would be an optimal way to address soil C storage and mitigate N2O emissions under saline conditions.


Assuntos
Gases de Efeito Estufa , Solo , Agricultura , Carvão Vegetal , Fertilizantes , Gases de Efeito Estufa/análise , Laboratórios , Óxido Nitroso/análise
7.
Sci Total Environ ; 788: 147773, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34029806

RESUMO

The anaerobic oxidation of methane (AOM) mediated by microorganisms is a key process in the reduction of methane emissions, and AOM-coupled electron acceptors have been shown to regulate methane emissions into the atmosphere in marine systems. Paddy fields are a significant source of methane and account for 20% of global methane emissions, but the effect of electron acceptors on the methane emission process in flooded paddy fields has been poorly characterized. This study aimed to determine whether the electron acceptors ferric iron and nitrate, and biochar, acting as an electron shuttle, can regulate the AOM process in paddy soil, with or without interaction between biochar and these two electron acceptors. We also aimed to characterize which microorganisms are actively involved. Here, we added 13C-labeled CH4 (13CH4) into anaerobic microcosms to evaluate the role of electron acceptors by measuring the methane oxidation rate and the enrichment of 13C-labeled CO2 (13CO2). We then combined DNA-stable isotope probing with amplicon sequencing to study the active microorganisms. We found for the first time that, in addition to nitrate, ferric iron can also effectively promote AOM in paddy soil. However, there was no significant effect of biochar. Ferric iron-dependent AOM was mainly carried out by iron-reducing bacteria (Geobacter, Ammoniphilus and Clostridium), and nitrate-dependent AOM was mainly by nitrate-reducing bacteria (Rhodanobacter, Paenibacillus and Planococcus). Our results demonstrate that the AOM process, regulated by the electron acceptors ferric iron and nitrate, can alleviate methane emission from paddy soil. The potentially active microorganisms related to electron acceptor reduction may be crucial for this methane sink and deserve further research.


Assuntos
Metano , Microbiota , Anaerobiose , Archaea , Ferro , Nitratos , Oxirredução , Solo
8.
Environ Pollut ; 265(Pt A): 115106, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806403

RESUMO

The conversion of natural forests to tea plantations largely affects soil nitrous oxide (N2O) emissions and soil microbial communities. However, the impacts of this conversion on the contribution of fungi to N2O emission and on fungal community structure remain unclear. In this study, we determined the soil N2O emission rate, N2O production by fungi, associated fungal community diversity, and related ecological factors in chronological changes of tea crop systems (3, 36 and 105 years old tea orchards named T3, T36 and T105, respectively), and in an adjacent soil from a natural forest. The results indicate that the tea plantations significantly enhanced soil N2O production compared with the forest soil. Tea plantations significantly decreased soil pH and C/N ratio, but increased soil inorganic nitrogen (N). Furthermore, they increased the fungal contribution to the production of soil N2O, but decreased the bacterial counterpart. We also observed that fungal community and functional composition differed distinctly between tea plantations and forest. Additionally, most of the fungal groups in high N2O emission soils (T36 and T105) were identified as the genus Fusarium, which were positively correlated with soil N2O emissions. The variation in N2O emission response could be well explained by NO3--N, soil organic carbon (SOC), C/N, and Fusarium, which contributed to up to 97% of the observed variance. Altogether, these findings provide significant direct evidence that the increase of soil N2O emissions and fungal communities be attributed to the conversion of natural forest to tea plantations.


Assuntos
Micobioma , Carbono/análise , Florestas , Fungos , Solo , Microbiologia do Solo , Chá
9.
Environ Sci Pollut Res Int ; 26(35): 35978-35987, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31709485

RESUMO

Biochar has been considered as a promising soil amendment for improving fertility and mitigating N2O emission from the arable land. However, biochar's effectiveness in acidic tea soil and underlying mechanisms are largely unknown. We conducted a short-term microcosm experiment using two biochars (1% w/w, LB, generated from legume and NLB, non-legume biomass, respectively) to investigate the effects of biochar amendments on soil chemical properties, N2O emission, and microbial community in an acidic soil. Soil and headspace gas samples were taken on 1, 10, and 30 day's incubation. Biochar amendment increased soil pH and DOC, however, significantly reduced soil inorganic N. Both biochars at ~ 1% addition had little effect on microbial CO2 respiration but suppressed soil N2O emission by ~ 40% during the incubation. The divergence in N2O efflux rates between soils with and without biochar addition aligned to some degree with changes in soil pH, inorganic N, and dissolved organic C (DOC). We also found that biochar addition significantly modified the fungal community structure, in particular the relative abundance of members of Ascomycota, but not the bacterial community. Furthermore, the copy number of nosZ, the gene encoding N2O reductase, was significantly greater in biochar-amended soils than the soil alone. Our findings contribute to better understanding of the impact of biochar on the soil chemical properties, soil N2O emission, and microbial community and the consequences of soil biochar amendment for improving the health of acidic tea soil.


Assuntos
Poluentes Atmosféricos/análise , Carvão Vegetal/química , Dióxido de Nitrogênio/análise , Microbiologia do Solo , Ácidos , Poluentes Atmosféricos/química , Bactérias , Biomassa , Microbiota , Dióxido de Nitrogênio/química , Solo/química , Chá
10.
Sci Total Environ ; 647: 551-560, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30089277

RESUMO

Biochar can be used as a promising potential substance to reduce the availability of toxic elements and compounds in contaminated soils but its effects on the accessibility of pesticides and microbiological interactions still remain unclear. Here, 65 day incubation experiments were conducted to investigate the efficacy of biochars on the accessibility of 21 different organochlorine pesticides (OCPs), and also to evaluate their influence on soil microbial community. The tested soil was collected from an agricultural field, containing loamy sand texture, and historically contaminated with high concentrations of OCPs. The soil was amended with four different kinds of biochars: sewage sludge biochar (SSBC), peanut shells biochar (PNBC), rice straw biochar (RSBC), and soybean straw biochar (SBBC). The results indicated that biochar-amendments had strong effects upon OCP accessibility over time and can act as super sorbent. Despite greater persistence of OCPs in soil, the application of selected biochars significantly (p < 0.01) reduced the accessibility of ∑OCPs in the amended soil in the order of SSBC (8-69%), PNBC (11-75%), RSBC (6-67%), and SBBC (14-86%), as compared to the control soil during 0-65 d incubation period. Moreover, the findings from total phospholipid acid (PLFA) and Illumina next-generation sequencing revealed that the incorporation of biochar have altered the soil microbial community structure over time. Higher abundances of Proteobacteria, firmicutes, Gemmatimonadetes, and Actinobacteria were found in biochar amendments. However, the relative abundances of Acidobacteria and Chloroflexi decreased, following biochar addition. The findings of these experiments suggest that biochar addition to soil at the rate of 3% (w/w) could be advantageous for decreasing accessibility of OCPs, enhancing the soil microbial communities, and their subsequent risk to environment and food chain contamination.

11.
Huan Jing Ke Xue ; 37(5): 1986-92, 2016 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-27506057

RESUMO

To investigate the effects of thermophilic composting process on antibiotic resistance genes (ARGs) of swine manure source at a field scale, the abundance of four erythromycin resistance genes (ermA, ermB, ermC and ermF), three ß-lactam resistance genes (blaTEM, blaCTX and blaSHV) and two quinolone resistance genes (qnrA and qnrS) were quantified by quantitative PCR ( qPCR) during the composting process. The results suggested that the erm genes' copy numbers were significantly higher than those of the bla and qnr genes in the early stage of composting (P < 0.01). The maximum abundance of erm genes was ermB (9.88 x 108 copies · g⁻¹), following by ermF (9.4 x 108 copies · g⁻¹). At the end of the composting process, bla and qnr genes were at low levels, while erm genes were still at high levels. Even through ermF was proliferated comparing with the initial copies. These results indicated that thermophilic composting process could not effectively remove all ARGs. For some ARGs, compost may be a good bioreactor resulting in their proliferation. Application of composting products on farmland may cause transference of ARGs.


Assuntos
Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esterco , Eliminação de Resíduos/métodos , Microbiologia do Solo , Animais , Antibacterianos , Solo/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...