Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(22): 227202, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925730

RESUMO

Here we present a study of magnetism in Co_{0.05}Ti_{0.95}O_{2-δ} anatase films grown by pulsed laser deposition under a variety of oxygen partial pressures and deposition rates. Energy-dispersive spectrometry and transmission electron microscopy analyses indicate that a high deposition rate leads to a homogeneous microstructure, while a very low rate or postannealing results in cobalt clustering. Depth resolved low-energy muon spin rotation experiments show that films grown at a low oxygen partial pressure (≈10^{-6} torr) with a uniform structure are fully magnetic, indicating intrinsic ferromagnetism. First principles calculations identify the beneficial role of low oxygen partial pressure in the realization of uniform carrier-mediated ferromagnetism. This work demonstrates that Co:TiO_{2} is an intrinsic diluted magnetic semiconductor.

2.
Nanoscale ; 6(11): 6166-72, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24793305

RESUMO

Due to their graphene-like properties after oxygen reduction, incorporation of graphene oxide (GO) sheets into correlated-electron materials offers a new pathway for tailoring their properties. Fabricating GO nanocomposites with polycrystalline MgB2 superconductors leads to an order of magnitude enhancement of the supercurrent at 5 K/8 T and 20 K/4 T. Herein, we introduce a novel experimental approach to overcome the formidable challenge of performing quantitative microscopy and microanalysis of such composites, so as to unveil how GO doping influences the structure and hence the material properties. Atom probe microscopy and electron microscopy were used to directly image the GO within the MgB2, and we combined these data with computational simulations to derive the property-enhancing mechanisms. Our results reveal synergetic effects of GO, namely, via localized atomic (carbon and oxygen) doping as well as texturing of the crystals, which provide both inter- and intra-granular flux pinning. This study opens up new insights into how low-dimensional nanostructures can be integrated into composites to modify the overall properties, using a methodology amenable to a wide range of applications.

3.
J Nanosci Nanotechnol ; 13(2): 1251-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23646613

RESUMO

Graphene based quantum dots and antidots are two nanostructures of primary importance for their fundamental physics and technological applications, particularly in the emerging field of graphene-based nanoelectronics and nanospintronics. Herein, based on first principles density functional theory calculations, we report a comparative study on the electronic structure of these two structurally complementary entities, where the bandgap opening, edge magnetism and the role of hydrogenation are investigated. Our results show the diversity of electronic structures of various dots and antidots, whose properties are sensitive to the edge detailed geometry (including size and shape and edge type). Hydrogen passivation plays an essential roal in affecting the related properties, in particular, it leads to larger bandgap values and suppress the edge magnetism. The frontier orbital analysis is employed to rationalize and compare the complicated nature of dots and antidots. Based on the specific geometrical consideration and the total energy competition of the ground antiferromagnetic and the ferromagnetic states, some magnetic structures (the unpassivated 42-atom-antidot and 54-atom-dot) are proposed to be useful as magnetic switches.

4.
Phys Chem Chem Phys ; 13(48): 21243-7, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22025089

RESUMO

The electrical and magnetic properties of Zn-doped Fe(3)O(4) at different doping concentrations of Zn have been investigated using a density functional method with generalized-gradient approximation corrected for on-site Coulombic interactions. The electronic structure calculation predicts that Zn(x)Fe(3-x)O(4) (0 ≤x≤ 0.875) is half-metallic with a full spin polarization. The hopping carrier concentration of Zn(x)Fe(3-x)O(4) decreases with increasing x, which indicates a distinct increase in the resistivity. The saturation magnetization of Zn(x)Fe(3-x)O(4) increases evidently with increasing x from x = 0 to x = 0.75 (i.e. from 4.0 to 8.3 µ(B)/f.u.) and then decreases rapidly to zero at x = 1. The robust half-metallicity, large tunability of electrical and magnetic properties of a Zn doped Fe(3)O(4) system make it a promising functional material for spintronic applications.

5.
Phys Rev Lett ; 106(24): 247002, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21770591

RESUMO

Local fluctuations in the distribution of dopant atoms are thought to cause the nanoscale electronic disorder or phase separation in pnictide superconductors. Atom probe tomography has enabled the first direct observations of dopant species clustering in a K-doped 122-phase pnictide. First-principles calculations suggest the coexistence of static magnetism and superconductivity on a lattice parameter length scale over a wide range of dopant concentrations. Our results provide evidence for a mixed scenario of phase coexistence and phase separation, depending on local dopant atom distributions.

6.
Nanotechnology ; 21(14): 145705, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20234078

RESUMO

Ferromagnetism is found in nanocrystalline Zn/ZnO core-shell structures prepared by sputtering pure Zn with subsequent oxidation. The saturation magnetization (M(S)) of the passivated ZnO shells increases with decrease in average particle size (d). The Curie temperature of the samples is above 400 degrees C. It is found that the ferromagnetism has a close relationship with point defects in ZnO shells. The maximum magnetization is estimated to be 28 emu cm(-3) (i.e. 0.14 mu(B) per unit cell) at 300 K, which is over three orders of magnitude larger than that of undoped ZnO nanoparticles or nanorods (10(-3)-10(-2) emu cm(-3)). More importantly, there is a scaling relation of M(s) alpha 1/d(n) (n = 5.20 +/- 0.20) for samples with d

7.
J Phys Condens Matter ; 18(26): 5905-10, 2006 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690806

RESUMO

The dependence of the peak temperature (T(P)) of the zero-field-cooled (ZFC) magnetization curves on the field in a magnetic nanoparticle system was studied using a diluted magnetic fluid composed of FePt nanoparticles. We found that the peak temperature increases with increasing applied field below 3 kOe; it then decreases when the applied field is increased further. We attribute the non-monotonic field dependence of the peak temperature to the anisotropic energy barrier distribution of the particles and to the slow decrease of high-field magnetization above the blocking temperature. Numerical simulations, based on magnetic dynamics, agree well with our experimental results.

8.
Chem Commun (Camb) ; (11): 1447-9, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15756331

RESUMO

Poly(vinylidene fluoride trifluoroethylene) copolymer nanowires and nanotubes have been prepared for the first time via a high temperature (

9.
Phys Rev Lett ; 93(13): 139702; author reply 139703, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15524768
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...