Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403263, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657031

RESUMO

Hierarchical self-assembly represents a powerful strategy for the fabrication of functional materials across various length scales. However, achieving precise formation of functional hierarchical assemblies remains a significant challenge and requires a profound understanding of molecular assembly interactions. In this study, we present a molecular-level understanding of the hierarchical assembly of sequence-defined peptoids into multidimensional functional materials, including twisted nanotube bundles serving as a highly efficient artificial light harvesting system. By employing synchrotron-based powder X-ray diffraction and analyzing single crystal structures of model compounds, we elucidated the molecular packing and mechanisms underlying the assembly of peptoids into multidimensional nanostructures. Our findings demonstrate that incorporating aromatic functional groups, such as tetraphenyl ethylene (TPE), at the termini of assembling peptoid sequences promotes the formation of twisted bundles of nanotubes and nanosheets, thus enabling the creation of a highly efficient artificial light harvesting system. This research exemplifies the potential of leveraging sequence-defined synthetic polymers to translate microscopic molecular structures into macroscopic assemblies. It holds promise for the development of functional materials with precisely controlled hierarchical structures and designed functions.

2.
Acta Crystallogr C Struct Chem ; 80(Pt 3): 85-90, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38407217

RESUMO

The compound [5,10,15,20-tetrakis(4-fluoro-2,6-dimethylphenyl)porphyrinato]platinum(II), [Pt(C52H40F4N4)] or Pt(II)TFP, has been synthesized and structurally characterized by single-crystal X-ray crystallography. The Pt porphyrin exhibits a long-lived phosphorescent excited state (τ0 = 66 µs), which has been characterized by transient absorption and emission spectroscopy. The phosphorescence is extremely sensitive to oxygen, as reflected by a quenching rate constant of 5.0 × 108 M-1 s-1, and as measured by Stern-Volmer quenching analysis.

3.
Chem Sci ; 14(43): 12283-12291, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969596

RESUMO

Atomically precise nanoclusters (NCs) can be designed with high faradaic efficiency for the electrochemical reduction of CO2 to CO (FECO) and provide useful model systems for studying the metal-catalysed CO2 reduction reaction (CO2RR). While size-dependent trends are commonly evoked, the effect of NC size on catalytic activity is often convoluted by other factors such as changes to surface structure, ligand density, and electronic structure, which makes it challenging to establish rigorous structure-property relationships. Herein, we report a detailed investigation of a series of NCs [AunAg46-n(C[triple bond, length as m-dash]CR)24Cl4(PPh3)2, Au24Ag20(C[triple bond, length as m-dash]CR)24Cl2, and Au43(C[triple bond, length as m-dash]CR)20/Au42Ag1(C[triple bond, length as m-dash]CR)20] with similar sizes and core structures but different ligand packing densities to investigate how the number of accessible metal sites impacts CO2RR activity and selectivity. We develop a simple method to determine the number of CO2-accessible sites for a given NC then use this to probe relationships between surface accessibility and CO2RR performance for atomically precise NC catalysts. Specifically, the NCs with the highest number of accessible metal sites [Au43(C[triple bond, length as m-dash]CR)20 and Au42Ag1(C[triple bond, length as m-dash]CR)20] feature a FECO of >90% at -0.57 V vs. the reversible hydrogen electrode (RHE), while NCs with lower numbers of accessible metal sites have a reduced FECO. In addition, CO2RR studies performed on other Au-alkynyl NCs that span a wider range of sizes further support the relationship between FECO and the number of accessible metal sites, regardless of NC size. This work establishes a generalizable approach to evaluating the potential of atomically precise NCs for electrocatalysis.

4.
Angew Chem Int Ed Engl ; 62(50): e202313156, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37830508

RESUMO

Metalation of the polynucleating ligand F,tbs LH6 (1,3,5-C6 H9 (NC6 H3 -4-F-2-NSiMe2 t Bu)3 ) with two equivalents of Zn(N(SiMe3 )2 )2 affords the dinuclear product (F,tbs LH2 )Zn2 (1), which can be further deprotonated to yield (F,tbs L)Zn2 Li2 (OEt2 )4 (2). Transmetalation of 2 with NiCl2 (py)2 yields the heterometallic, trinuclear cluster (F,tbs L)Zn2 Ni(py) (3). Reduction of 3 with KC8 affords [KC222 ][(F,tbs L)Zn2 Ni] (4) which features a monovalent Ni centre. Addition of 1-adamantyl azide to 4 generates the bridging µ3 -nitrenoid adduct [K(THF)3 ][(F,tbs L)Zn2 Ni(µ3 -NAd)] (5). EPR spectroscopy reveals that the anionic cluster possesses a doublet ground state (S = 1 / 2 ${{ 1/2 }}$ ). Cyclic voltammetry of 5 reveals two fully reversible redox events. The dianionic nitrenoid [K2 (THF)9 ][(F,tbs L)Zn2 Ni(µ3 -NAd)] (6) was isolated and characterized while the neutral redox isomer was observed to undergo both intra- and intermolecular H-atom abstraction processes. Ni K-edge XAS studies suggest a divalent oxidation state for the Ni centres in both the monoanionic and dianionic [Zn2 Ni] nitrenoid complexes. However, DFT analysis suggests Ni-borne oxidation for 5.

5.
Chem Sci ; 14(39): 10847-10860, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37829016

RESUMO

Despite the myriad Cu-catalyzed nitrene transfer methodologies to form new C-N bonds (e.g., amination, aziridination), the critical reaction intermediates have largely eluded direct characterization due to their inherent reactivity. Herein, we report the synthesis of dipyrrin-supported Cu nitrenoid adducts, investigate their spectroscopic features, and probe their nitrene transfer chemistry through detailed mechanistic analyses. Treatment of the dipyrrin CuI complexes with substituted organoazides affords terminally ligated organoazide adducts with minimal activation of the azide unit as evidenced by vibrational spectroscopy and single crystal X-ray diffraction. The Cu nitrenoid, with an electronic structure most consistent with a triplet nitrene adduct of CuI, is accessed following geometric rearrangement of the azide adduct from κ1-N terminal ligation to κ1-N internal ligation with subsequent expulsion of N2. For perfluorinated arylazides, stoichiometric and catalytic C-H amination and aziridination was observed. Mechanistic analysis employing substrate competition reveals an enthalpically-controlled, electrophilic nitrene transfer for primary and secondary C-H bonds. Kinetic analyses for catalytic amination using tetrahydrofuran as a model substrate reveal pseudo-first order kinetics under relevant amination conditions with a first-order dependence on both Cu and organoazide. Activation parameters determined from Eyring analysis (ΔH‡ = 9.2(2) kcal mol-1, ΔS‡ = -42(2) cal mol-1 K-1, ΔG‡298K = 21.7(2) kcal mol-1) and parallel kinetic isotope effect measurements (1.10(2)) are consistent with rate-limiting Cu nitrenoid formation, followed by a proposed stepwise hydrogen-atom abstraction and rapid radical recombination to furnish the resulting C-N bond. The proposed mechanism and experimental analysis are further corroborated by density functional theory calculations. Multiconfigurational calculations provide insight into the electronic structure of the catalytically relevant Cu nitrene intermediates. The findings presented herein will assist in the development of future methodology for Cu-mediated C-N bond forming catalysis.

6.
ACS Infect Dis ; 9(8): 1470-1487, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37417544

RESUMO

Leishmaniasis is a collection of diseases caused by more than 20 Leishmania parasite species that manifest as either visceral, cutaneous, or mucocutaneous leishmaniasis. Despite the significant mortality and morbidity associated with leishmaniasis, it remains a neglected tropical disease. Existing treatments have variable efficacy, significant toxicity, rising resistance, and limited oral bioavailability, which necessitates the development of novel and affordable therapeutics. Here, we report on the continued optimization of a series of imidazopyridines for visceral leishmaniasis and a scaffold hop to a series of substituted 2-(pyridin-2-yl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazoles with improved absorption, distribution, metabolism, and elimination properties.


Assuntos
Leishmania , Leishmaniose Visceral , Leishmaniose , Humanos , Leishmaniose Visceral/tratamento farmacológico , Doenças Negligenciadas , Imidazóis/farmacologia
7.
J Am Chem Soc ; 145(16): 9304-9312, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043219

RESUMO

Atomically precise metal nanoclusters (NCs) are an intriguing class of crystalline solids with unique physicochemical properties derived from tunable structures and compositions. Most atomically precise NCs require closed-shells and coordinatively saturated surface metals in order to be stable. Herein, we report Au43(C≡CtBu)20 and Au42Ag1(C≡CtBu)20, which feature open electronic and geometric shells, leading to both paramagnetism (23 valence e-) and enhanced catalytic activity from a single coordinatively unsaturated surface metal. The Au-alkynyl surface motifs of these NCs form five helical stripes around the inner Au12 kernel, imparting chirality and high thermal stability. Density functional theory (DFT) calculations suggest that there are minimal energy differences between the open-shelled NCs and hypothetical closed-shell systems and that the open-shelled electronic configuration gives rise to the largest band gap, which is known to promote cluster stability. Furthermore, we highlight how coordinatively unsaturated surface metals create active sites for the catalytic oxidation of benzyl alcohol to benzaldehyde, leading to high selectivity and increased conversion. This work represents the first example of an atomically precise Au NC with a double open-shelled structure and provides a promising platform for investigating the magnetic and catalytic properties of noble metal nanoparticles.

8.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 3): 231-235, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909986

RESUMO

Quadruple-bond dimolybdenum complexes provide invaluable insight into the two-electron bond, with structural chemistry providing a foundation for examination of bond properties. The synthesis and solid-state structure of the quadruple-bonded dimolybdenum(II) complex tetra-kis-(µ-4-methyl-benzoato-κ 2 O:O')bis[(tetra-hydro-furan-κO)molybdenum(II)] tetra-hydro-furan disolvate, [Mo2(C8H7O2)4(C4H8O)2]·2C4H8O, are presented. This complex crystallizes in a triclinic cell with low-symmetry space group P . The dimolybdenum paddlewheel structure comprises four methyl-benzoate ligands and two axial THF ligands. The dimolybdenum bond distance of 2.1012 (4) Šis exemplary of this class of compounds.

9.
J Org Chem ; 87(24): 16847-16850, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36475686

RESUMO

The structure of petrichorin C1 (4) converted from petrichorin C (3) was determined using NMR spectroscopy and X-ray crystallography. The chemical stability of petrichorins A and C (1 and 3) was investigated by NMR spectroscopy, X-ray crystallography, and calculations.


Assuntos
Modelos Moleculares , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética/métodos
10.
J Med Chem ; 65(21): 14642-14654, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36288465

RESUMO

NNMT uses SAM as a cofactor to catalyze the methylation of nicotinamide, producing 1-methylnicotinamide. Recent studies have shown that NNMT upregulation in cancer-associated fibroblasts (CAFs) is required to maintain the CAF phenotype in high-grade serous carcinoma. These observations suggest that NNMT should be evaluated as a therapeutic target, especially in cancer. Although several small-molecule inhibitors of NNMT have been identified, there remains a need for highly potent and selective inhibitors with excellent in vivo activity and ADME properties that can be used as reliable chemical probes. We have identified azaindoline carboxamide 38 as a selective and potent NNMT inhibitor with favorable PK/PD and safety profiles as well as excellent oral bioavailability and pharmaceutical properties. Our mechanistic studies indicate that 38 binds uncompetitively with SAM but competitively with nicotinamide consistent with its binding in the nicotinamide binding site and likely forming a positive interaction with SAM.


Assuntos
Niacinamida , Nicotinamida N-Metiltransferase , Sítios de Ligação , Metilação , Niacinamida/farmacologia , Niacinamida/metabolismo
11.
Inorg Chem ; 61(31): 12308-12317, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35892197

RESUMO

The monoanionic tetrapyrrolic macrocycle B,C-tetradehydrocorrin (TDC) resides chemically between corroles and corrins. This chemical space remains largely unexplored due to a lack of reliable synthetic strategies. We now report the preparation and characterization of Co(II)- and Ni(II)-metalated TDC derivatives ([Co-TDC]+ and [Ni-TDC]+, respectively) with a combination of crystallographic, electrochemical, computational, and spectroscopic techniques. [Ni-TDC]+ was found to undergo primarily ligand-centered electrochemical reduction, leading to hydrogenation of the macrocycle under cathodic electrolysis in the presence of acid. Transient absorption (TA) spectroscopy reveals that [Ni-TDC]+ and the two-electron-reduced [Ni-TDC]- possess long-lived excited states, whereas the excited state of singly reduced [Ni-TDC] exhibits picosecond dynamics. The Co(I) compound [Co-TDC] is air stable, highlighting the notable property of the TDC ligand to stabilize low-valent metal centers in contradistinction to other tetrapyrroles such as corroles, which typically stabilize metals in higher oxidation states.

12.
J Org Chem ; 87(15): 10018-10025, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35877958

RESUMO

Inspired by crystal structures, we designed and achieved a catalyst-free Michael reaction for the preparation of an N1-alkyl pyrazole in a high yield (>90%) with excellent regioselectivity (N1/N2 > 99.9:1). The scope of this protocol has been extended to accomplish the first general regioselective N1-alkylation of 1H-pyrazoles to give di-, tri-, and tetra-substituted pyrazoles in a single step. The resulting pyrazoles bear versatile functional groups such as bromo, ester, nitro, and nitrile, offering opportunities for late-stage functionalization. This efficient methodology will have an impact on drug discovery, as several Food and Drug Administration-approved drugs are pyrazole derivatives. A working hypothesis for the regioselectivity is proposed. X-ray crystal structures of the products that highlight the attractive interactions are discussed. This report provides a rare source for the further elucidation of the attractive interactions because the isomeric ratios and the crystal structures are directly related.


Assuntos
Pirazóis , Alquilação , Catálise , Isomerismo , Pirazóis/química
13.
Proc Natl Acad Sci U S A ; 119(20): e2122063119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533271

RESUMO

SignificanceThe chemical reduction of unsaturated bonds occurs by hydrogenation with H2 as the reductant. Conversely, in biology, the unavailability of H2 engenders the typical reduction of unsaturated bonds with electrons and protons from different cofactors, requiring olefin hydrogenation to occur by proton-coupled electron transfer (PCET). Moreover, the redox noninnocence of tetrapyrrole macrocycles furnishes unusual PCET intermediates, including the phlorin, which is an intermediate in tetrapyrrole ring reductions. Whereas the phlorin of a porphyrin is well established, the phlorin of a chlorin is enigmatic. By controlling the PCET reactivity of a chlorin, including the use of a hangman functionality to manage the proton transfer, the formation of a chlorinphlorin by PCET is realized, and the mechanism for its formation is defined.

14.
Nat Commun ; 13(1): 2536, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534457

RESUMO

Pressure-induced thermal changes in solids-barocaloric effects-can be used to drive cooling cycles that offer a promising alternative to traditional vapor-compression technologies. Efficient barocaloric cooling requires materials that undergo reversible phase transitions with large entropy changes, high sensitivity to hydrostatic pressure, and minimal hysteresis, the combination of which has been challenging to achieve in existing barocaloric materials. Here, we report a new mechanism for achieving colossal barocaloric effects that leverages the large volume and conformational entropy changes of hydrocarbon order-disorder transitions within the organic bilayers of select two-dimensional metal-halide perovskites. Significantly, we show how the confined nature of these order-disorder phase transitions and the synthetic tunability of layered perovskites can be leveraged to reduce phase transition hysteresis through careful control over the inorganic-organic interface. The combination of ultralow hysteresis and high pressure sensitivity leads to colossal reversible isothermal entropy changes (>200 J kg-1 K-1) at record-low pressures (<300 bar).

15.
Chem Sci ; 13(12): 3369-3374, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35432881

RESUMO

We report the selective electrochemical biphasic capture of the uranyl cation (UO2 2+) from mixed-metal alkali (Cs+), lanthanide (Nd3+, Sm3+), and actinide (Th4+, UO2 2+) aqueous solutions to an organic, 1,2-dichloroethane (DCE), phase using the ortho-substituted nido-carborane anion, [1,2-(Ph2PO)2-1,2-C2B10H10]2- (POCb2-). The reduced POCb2- is generated by electrochemical reduction of the closo-carborane, POCb, prior to mixing with the aqueous mixed-metal solution. Subsequent UO2 2+ release from the captured product, [UO2(POCb)2]2-, was performed by galvanostatic bulk electrolysis of the DCE phase and back-extraction of UO2 2+ to a fresh aqueous phase. The selective capture and release of UO2 2+ was confirmed by combined ICP-OES and NMR spectral analyses of the aqueous and organic phases, respectively, against the newly synthesized nido-carborane complexes, [[CoCp*2][Cs(POCb)]]2, [CoCp*2]3[Nd(POCb)3], [CoCp*2]3[Sm(POCb)3], and [CoCp*2]2[Th(POCb)3].

16.
ACS Omega ; 7(10): 8988-8994, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35309414

RESUMO

Zn(II), Cu(II), and Ni(II) 5,10,15,20-tetrakis(4-fluoro-2,6-dimethylphenyl)porphyrins (TFPs) have been synthesized and characterized. The electronic spectroscopy and cyclic voltammetry of these compounds, along with the free-base macrocycle (2H-TFP), have been determined; 2H-TFP was also structurally characterized by X-ray crystallography. The Cu(II)TFP exhibits catalytic activity for the hydrogen evolution reaction (HER). The analysis of linear sweep voltammograms shows that the HER reaction of Cu(II)TFP with benzoic acid is first-order in proton concentration with an average apparent rate constant for HER catalysis of k app = 5.79 ± 0.47 × 103 M-1 s-1.

17.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 2): 154-158, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35145742

RESUMO

The study of quadruple bonds between transition metals, in particular those of dimolybdenum, has revealed much about the two-electron bond. The solid-state structure of the quadruple-bonded dimolybdenum(II) complex tetra-kis-[µ-4-(tri-fluoro-methyl)-benzoato-κ2 O:O']bis[(tetra-hydro-furan-κO)molybdenum(II)] 0.762-pentane 0.238-tetra-hydro-furan solvate, [Mo2(p-O2CC6H4CF3)4·2THF]·0.762C5H12·0.238C4H8O or [Mo2(C8H4F3O2)4(C4H8O)2]·0.762C5H12·0.238C4H8O is reported. The complex crystallizes within a triclinic cell and low symmetry (P ) results from the inter-calated penta-ne/THF solvent mol-ecules. The paddlewheel structure at 100 K has inversion symmetry and comprises four bridging carboxyl-ate ligands encases the Mo2(II,II) core that is characterized by two axially coordinated THF mol-ecules and an Mo-Mo distance of 2.1098 (7) Å.

18.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 9): 864-866, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34584750

RESUMO

Peer tutoring is a teaching strategy that offers a creative way of getting students more involved and accountable for their own learning in college-level chemistry courses. The authors have found that the 'Symmetry and Space Group Tutorial' [Jasinski & Foxman (2007). Symmetry and Space Group Tutorial, V1.55. http://people.brandeis.edu/~foxman1/teaching/indexpr.html] lends itself well to a peer-tutoring approach in a crystallography course for chemistry students. This in-class activity provides an opportunity for students to learn space-group diagrams, understand basic symmetry concepts, organize what they have learned, and explain it to their peers, which leads to a deeper overall understanding of the subject. We report on our experience in planning peer tutoring, advise on best practices, and demonstrate the positive impact on student learning and engagement.

19.
3 Biotech ; 11(8): 391, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34458061

RESUMO

Bioassay-guided experimental design and chromatographic analysis led to the isolation and identification of ten compounds (1-10) including two unusual sulfur-containing curvularin macrolides (1 and 2) from a Hawaiian fungal strain Aspergillus polyporicola FS910. Compounds 1 and 2 are rare curvularin macrolides each with a five-membered cyclic sulfur-containing moiety. The structures of the compounds were identified by HRESIMS, NMR spectroscopy, X-ray crystallography, ECD and DFT energy calculation, as well as comparing with previous literatures. Compounds 4, 6 and 8 were active against TNF-α-induced NF-κB inhibitory activity with IC50 values of 26.45, 5.41 and 15.8 µM, respectively. Compounds 3 and 5-8 exhibited anti-proliferative activity against HT1080, T46D, and A2780S cell lines, with IC50 values ranging from 2.48 to 29.17 µM. Additionally, Compound 3 showed promising antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), Bacillus subtilis, Escherichia coli and Candida albicans. Moreover, when tested in combination with antibiotic adjuvant disulfiram [4 µg/mL], compounds 4, 5 and 10 also displayed significant antibacterial activity against S. aureus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02877-7.

20.
J Am Chem Soc ; 143(19): 7480-7489, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33949855

RESUMO

Intramolecular alkoxylation of C-H bonds can rapidly introduce structural and functional group complexities into seemingly simple or inert precursors. The transformation is particularly important due to the ubiquitous presence of tetrahydrofuran (THF) motifs as fundamental building blocks in a wide range of pharmaceuticals, agrochemicals, and natural products. Despite the various synthetic methodologies known for generating functionalized THFs, most show limited functional group tolerance and lack demonstration for the preparation of spiro or fused bi- and tricyclic ether units prevalent in molecules for pharmacological purposes. Herein we report an intramolecular C-H alkoxylation to furnish oxacycles from easily prepared α-diazo-ß-ketoesters using commercially available iron acetylacetonate (Fe(acac)2) as a catalyst. The reaction is proposed to proceed through the formation of a vinylic carboradical arising from N2 extrusion, which mediates a proximal H-atom abstraction followed by a rapid C-O bond forming radical recombination step. The radical mechanism is probed using an isotopic labeling study (vinyl C-D incorporation), ring opening of a radical clock substrate, and Hammett analysis and is further corroborated by density functional theory (DFT) calculations. Heightened reactivity is observed for electron-rich C-H bonds (tertiary, ethereal), while greater catalyst loadings or elevated reaction temperatures are required to fully convert substrates with benzylic, secondary, and primary C-H bonds. The transformation is highly functional group tolerant and operates under mild reaction conditions to provide rapid access to complex structures such as spiro and fused bi-/tricyclic O-heterocycles from readily available precursors.


Assuntos
Compostos Heterocíclicos/síntese química , Hidroxibutiratos/química , Ferro/química , Pentanonas/química , Catálise , Compostos Heterocíclicos/química , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...