Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 14(11): 15306-15316, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33185086

RESUMO

Two-dimensional (2D) membranes exhibit exceptional properties in molecular separation and transport, which reveals their potential use in various applications. However, ion sieving with 2D membranes is severely restrained due to intercalation-induced swelling. Here, we describe how to efficiently stabilize the lamellar architecture using Keggin Al13 polycations as pillars in a Ti3C2Tx membrane. More importantly, interlayer spacing can be easily adjusted with angstrom precision over a wide range (2.7-11.2 Å) to achieve selective and tunable ion sieving. A membrane with narrow d-spacing demonstrated enhanced selectivity for monovalent ions. When applied in a forward osmosis desalination process, this membrane exhibited high NaCl exclusion (99%) with a fast water flux (0.30 L m-2 h-1 bar-1). A membrane with wide d-spacing showed notable selectivity, which was dependent on the cation valence. When it was applied to acid recovery from iron-based industrial wastewater, the membrane showed good H+/Fe2+ selectivity, which makes it a promising substitute for traditional polymeric membranes. Thus, we introduce a possible route to construct 2D membranes with appropriate structures to satisfy different ion-sieving requirements in diverse environment-, resource-, and energy-related applications.

2.
Nat Commun ; 11(1): 3540, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669687

RESUMO

Two-dimensional membranes attract extensive interest due to the anomalous transport phenomena; however, the ion separation performance is below the theoretical prediction. The stabilization of d-spacing is a key step for enhancing ion selectivity. Here, we demonstrate a strategy for stabilizing the Ti3C2Tx laminar architecture by alginate hydrogel pillars. After pillared by Ca-alginate, the nanochannel diameters are effectively fixed at 7.4 ± 0.2 Å, and the membrane presents a permeation cutoff and an outstanding sieving property towards valent cations. When applied for acid recovery, the outstanding H+/Fe2+ selectivity makes the membrane a promising substitution for traditional ion-exchange membranes. Moreover, the ultrathin Mn-alginate pillared membrane with identical d-spacing exhibits 100% Na2SO4 rejection with high water permeance, which is superior to the state-of-the-art nanofiltration membranes. Building on these findings, we demonstrate an efficient method to tune the ion selectivity and introduce a new perspective for energy- and environment-related applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA