Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1092100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065156

RESUMO

Introduction: Ducks are important agricultural animals, which can be divided into egg and dual-purpose type ducks according to economic use. The gut microbiota of ducks plays an important role in their metabolism, immune regulation, and health maintenance. Methods: Here, we use 16S rDNA V4 hypervariable amplicon sequencing to investigate the compositions and community structures of fecal microbiota between egg (five breeds, 96 individuals) and dual-purpose type ducks (four breeds, 73 individuals) that were reared under the same conditions. Results: The alpha diversity of fecal microflora in egg type ducks was significantly higher than that in dual-type ducks. In contrast, there is no significant difference in the fecal microbial community richness between the two groups. MetaStat analysis showed that the abundance of Peptostreptococcaceae, Streptococcaceae, Lactobacillus, Romboutsia, and Campylobacter were significantly different between the two groups. The biomarkers associated with the egg and dual-purpose type ducks were identified using LEfSe analysis and IndVal index. Function prediction of the gut microbiota indicated significant differences between the two groups. The functions of environmental information processing, carbohydrate metabolism, lipid metabolism, xenobiotic biodegradation and metabolism, and metabolism of terpenoids and polyketides were more abundant in egg type ducks. Conversely, the genetic information processing, nucleotide metabolism, biosynthesis of amino acids and secondary metabolites, glycan biosynthesis and metabolism, fatty acid elongation, and insulin resistance were significantly enriched in dual-purpose type ducks. Discussion: This study explored the structure and diversity of the gut microbiota of ducks from different economic-use groups, and provides a reference for improving duck performance by using related probiotics in production.

2.
Animal ; 17(5): 100797, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37121157

RESUMO

The Zhongshan duck (ZSP) is a duck breed indigenous to China and is known for its moderate body size, strong disease resistance, tender meat, and little subcutaneous fat. However, the genomic basis of such excellent breeding characteristics remains poorly understood. Therefore, we generated whole-genomes of 58 ZSPs and 180 other indigenous Chinese ducks (60 Jinding ducks, 60 Shan Partridge ducks, and 60 Liancheng white ducks) and identified 10 560 032 single nucleotide polymorphisms and 1 334 893 structural variants. Based on genetic diversity and population structure indices, our results confirm that the ZSP is a unique germplasm resource. In addition, three reproduction-related genes (i.e., OAZ, AMH, and RLF) were located in highly differentiated regions between the ZSP and the other three duck breeds (Jinding duck; Liancheng White duck; Shan Partridge duck), suggesting that these genes may have a strong influence on egg production. Among these genes, AMH may have introgressed from an unknown species of the Anatidae family. We also identified other significant genes in the significantly differentiated window (i.e., 1% cut-off), some of which are responsible for growth and development (SEMA5B and MIB1), metabolism (EDEM3 and Xylb), skeletal system morphogenesis (bglap and MGP), and egg shape (ITPR2). These findings highlight the genetic characteristics of the ZSP that shape an array of its morphological traits. Overall, this study should facilitate a more fine-scale approach towards improving the ZSP and other indigenous ducks in China and even all over the world.


Assuntos
Patos , Genoma , Animais , Patos/genética , Polimorfismo de Nucleotídeo Único , China , Genômica
3.
Poult Sci ; 102(1): 102269, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36402042

RESUMO

Lingxian white goose (LXW) is a goose breed indigenous to China that is famous for its meat quality and fast growth. However, the genomic evidence underlying such excellent breeding characteristics remains poorly understood. Therefore, we performed whole-genome resequencing of 141 geese from 3 indigenous breeds to scan for selection signatures and detect genomic regions related to breed features of LXW. We identified 5 reproduction-related genes (SYNE1, ESR1, NRIP1, CCDC170, and ARMT1) in highly differentiated regions and 11 notable genes in 26 overlapping windows, some of which are responsible for meat quality (DHX15), growth traits (LDB2, SLIT2, and RBPJ), reproduction (KCNIP4), and unique immunity traits (DHX15 and SLIT2). These findings provide insights into the genetic characteristics of LXW and identify genes affecting important traits in LXW, which extends the genetic resources and basis for facilitating genetic improvement in domestic geese breeds.


Assuntos
Galinhas , Gansos , Animais , Gansos/genética , Galinhas/genética , Genoma , Genômica , Análise de Sequência de DNA/veterinária , Seleção Genética , Polimorfismo de Nucleotídeo Único
4.
Commun Biol ; 5(1): 1191, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344742

RESUMO

Geese are herbivorous birds that play an essential role in the agricultural economy. We construct the chromosome-level genome of a Chinese indigenous goose (the Xingguo gray goose, XGG; Anser cygnoides) and analyze the adaptation of fat storage capacity in the goose liver during the evolution of Anatidae. Genomic resequencing of 994 geese is used to investigate the genetic relationships of geese, which supports the dual origin of geese (Anser cygnoides and Anser anser). Chinese indigenous geese show higher genetic diversity than European geese, and a scientific conservation program can be established to preserve genetic variation for each breed. We also find that a 14-bp insertion in endothelin receptor B subtype 2 (EDNRB2) that determines the white plumage of Chinese domestic geese is a natural mutation, and the linkaged alleles rapidly increase in frequency as a result of genetic hitchhiking, leading to the formation of completely different haplotypes of white geese under strong artificial selection. These genomic resources and our findings will facilitate marker-assisted breeding of geese and provide a foundation for further research on geese genetics and evolution.


Assuntos
DNA Mitocondrial , Gansos , Animais , Gansos/genética , DNA Mitocondrial/genética , Metagenômica , Cromossomos , China
5.
BMC Biol ; 20(1): 188, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002819

RESUMO

BACKGROUND: The blue-crowned laughingthrush (Garrulax courtoisi) is a critically endangered songbird endemic to Wuyuan, China, with population of ~323 individuals. It has attracted widespread attention, but the lack of a published genome has limited research and species protection. RESULTS: We report two laughingthrush genome assemblies and reveal the taxonomic status of laughingthrush species among 25 common avian species according to the comparative genomic analysis. The blue-crowned laughingthrush, black-throated laughingthrush, masked laughingthrush, white-browed laughingthrush, and rusty laughingthrush showed a close genetic relationship, and they diverged from a common ancestor between ~2.81 and 12.31 million years ago estimated by the population structure and divergence analysis using 66 whole-genome sequencing birds from eight laughingthrush species and one out group (Cyanopica cyanus). Population inference revealed that the laughingthrush species experienced a rapid population decline during the last ice age and a serious bottleneck caused by a cold wave during the Chinese Song Dynasty (960-1279 AD). The blue-crowned laughingthrush is still in a bottleneck, which may be the result of a cold wave together with human exploitation. Interestingly, the existing blue-crowned laughingthrush exhibits extremely rich genetic diversity compared to other laughingthrushes. These genetic characteristics and demographic inference patterns suggest a genetic heritage of population abundance in the blue-crowned laughingthrush. The results also suggest that fewer deleterious mutations in the blue-crowned laughingthrush genomes have allowed them to thrive even with a small population size. We believe that cooperative breeding behavior and a long reproduction period may enable the blue-crowned laughingthrush to maintain genetic diversity and avoid inbreeding depression. We identified 43 short tandem repeats that can be used as markers to identify the sex of the blue-crowned laughingthrush and aid in its genetic conservation. CONCLUSIONS: This study supplies the missing reference genome of laughingthrush, provides insight into the genetic variability, evolutionary potential, and molecular ecology of laughingthrush and provides a genomic resource for future research and conservation.


Assuntos
Passeriformes , Animais , Evolução Biológica , Cruzamento , Variação Genética , Genoma , Genômica , Humanos , Passeriformes/genética
6.
Gigascience ; 112022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35383847

RESUMO

BACKGROUND: The dazzling phenotypic characteristics of male Indian peafowl (Pavo cristatus) are attractive both to the female of the species and to humans. However, little is known about the evolution of the phenotype and phylogeny of these birds at the whole-genome level. So far, there are no reports regarding the genetic mechanism of the formation of leucism plumage in this variant of Indian peafowl. RESULTS: A draft genome of Indian peafowl was assembled, with a genome size of 1.05 Gb (the sequencing depth is 362×), and contig and scaffold N50 were up to 6.2 and 11.4 Mb, respectively. Compared with other birds, Indian peafowl showed changes in terms of metabolism, immunity, and skeletal and feather development, which provided a novel insight into the phenotypic evolution of peafowl, such as the large body size and feather morphologies. Moreover, we determined that the phylogeny of Indian peafowl was more closely linked to turkey than chicken. Specifically, we first identified that PMEL was a potential causal gene leading to the formation of the leucism plumage variant in Indian peafowl. CONCLUSIONS: This study provides an Indian peafowl genome of high quality, as well as a novel understanding of phenotypic evolution and phylogeny of Indian peafowl. These results provide a valuable reference for the study of avian genome evolution. Furthermore, the discovery of the genetic mechanism for the development of leucism plumage is both a breakthrough in the exploration of peafowl plumage and also offers clues and directions for further investigations of the avian plumage coloration and artificial breeding in peafowl.


Assuntos
Plumas , Genômica , Animais , Feminino , Tamanho do Genoma , Genômica/métodos , Masculino , Filogenia , Codorniz
7.
Front Vet Sci ; 9: 847481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372529

RESUMO

The domestic goose is an important economic animal in agriculture and its beak, a trait with high heritability, plays an important role in promoting food intake and defending against attacks. In this study, we sequenced 772 420-day-old Xingguo gray geese (XGG) using a low-depth (~1 ×) whole-genome resequencing strategy. We detected 12,490,912 single nucleotide polymorphisms (SNPs) using the standard GATK and imputed with STITCH. We then performed a genome-wide association study on the beak length trait in XGG. The results indicated that 57 SNPs reached genome-wide significance levels for the beak length trait and were assigned to seven genes, including TAPT1, DHX15, CCDC149, LGI2, SEPSECS, ANAPC4, and Slc34a2. The different genotypes of the most significant SNP (top SNP), which was located upstream of LGI2 and explained 7.24% of the phenotypic variation in beak length, showed significant differences in beak length. Priority-based significance analysis concluded that CCDC149, LGI2, and SEPSECS genes in the most significant quantitative trait locus interval were the most plausible positional and functional candidate genes for beak length development in the XGG population. These findings not only enhance our understanding of the genetic mechanism of the beak length phenotype in geese, but also lay the foundation for further studies to facilitate the genetic selection of traits in geese.

8.
J Genet Genomics ; 49(11): 1053-1063, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35413463

RESUMO

The domestication and artificial selection of wild boars have led to dramatic morphological and behavioral changes, especially in East Chinese (ECN) pigs. Here, we provide insights into the population structure and current genetic diversity of representative ECN pig breeds. We identify a 500-kb region containing six tooth development-relevant genes with almost completely different haplotypes between ECN pigs and Chinese wild boars or European domestic pigs. Notably, the c.195A>G missense mutation in exon 2 of AMBN may cause alterations in its protein structure associated with tusk degradation in ECN pigs. In addition, ESR1 may play an important role in the reproductive performance of ECN pigs. A major haplotype of the large lop ear-related MSRB3 gene and eight alleles in the deafness-related GRM7 gene may affect ear morphology and hearing in ECN pigs. Interestingly, we find that the two-end black (TEB) coat color in Jinhua pigs is most likely caused by EDNRB with genetic mechanisms different from other Chinese TEB pigs. This study identifies key loci that may be artificially selected in Chinese native pigs related to the tusk, coat color, and ear morphology, thus providing new insights into the genetic mechanisms of domesticated pigs.


Assuntos
Domesticação , Sus scrofa , Animais , Alelos , China , Variação Genética , Sus scrofa/genética , Suínos/genética
9.
Front Physiol ; 10: 345, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984026

RESUMO

The exocyst complex plays multiple roles via tethering secretory or recycling vesicles to the plasma membrane. Previous studies have demonstrated that the exocyst contains eight components, which possibly have some redundant but distinct functions. It is therefore interesting to investigate the biological function of each component. Here, we found that Sec3, one component of exocyst complex, is involved in Drosophila egg chamber development. Loss of sec3 results in egg chamber fusion through the abolishment of cell differentiation. In addition, loss of sec3 increases cell numbers but decreases cell size. These defects phenocopy Notch pathway inactivation. In line with this, loss of sec3 indeed leads to Notch protein accumulation, suggesting that the loss of Sec3 inhibits the delivery of Notch onto the plasma membrane and accumulates inactive Notch in the cytoplasm. Loss of sec3 also leads to the ectopic expression of two Notch pathway target genes, Cut and FasciclinIII, which should normally be downregulated by Notch. Altogether, our study revealed that Sec3 governs egg chamber development through the regulation of Notch, and provides fresh insights into the regulation of oogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...