Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 9(1): 4804, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886215

RESUMO

Seedling vigour (SV) is important for direct seeding rice (Oryza sativa L.), especially in a paddy-direct seeding system, but the genetic mechanisms behind the related traits remain largely unknown. Here, we used 744 germplasms, having at least two subsets, for the detection of quantitative trait loci (QTLs) affecting the SV-related traits tiller number, plant height, and aboveground dry weight at three sampling stages, 27, 34, and 41 d after sowing. A joint map based on GAPIT and mrMLM produced a satisfying balance between type I and II errors. In total, 42 QTL regions, containing 18 (42.9%) previously reported overlapping QTL regions and 24 new ones, responsible for SV were detected throughout the genome. Four QTL regions, qSV1a, qSV3e, qSV4c, and qSV7c, were delimited and harboured quantitative trait nucleotides that are responsible for SV-related traits. Favourable haplotype mining for the candidate genes within these four regions, as well as the early SV gene OsGA20ox1, was performed, and the favourable haplotypes were presented with donors from the 3,000 Rice Genome Project. This work provides new information and materials for the future molecular breeding of direct seeding rice, especially in paddy-direct seeding cultivation systems.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Plântula/genética , Mapeamento Cromossômico , Haplótipos , Oryza/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
3.
Front Plant Sci ; 9: 447, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706977

RESUMO

Grain minerals in rice, especially those in milled grains, are important sources of micro-nutrition elements, such as iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and selenium (Se), and of toxic heavy metal elements, especially cadmium (Cd), for populations consuming a rice diet. To date, the genetic mechanism underlying grain mineral concentrations (GMCs) in milled grain remains largely unknown. In this report, we adopted a set of 698 germplasms consisting of two subsets [indica/Xian (X-set) and japonica/Geng (G-set)], to detect quantitative trait loci (QTL) affecting GMC traits of Fe, Zn, Cd, Mn, Cu, and Se in milled grains. A total of 47 QTL regions, including 18 loci and 29 clusters (covering 62 Cd loci), responsible for the GMCs in milled grains were detected throughout the genome. A joint exploration of favorable haplotypes of candidate genes was carried out as follows: (1) By comparative mapping, 10 chromosome regions were found to be consistent with our previously detected QTL from linkage mapping. (2) Within eight of these regions on chromosomes 1, 4, 6, 7, and 8, candidate genes were identified in the genome annotation database. (3) A total of 192 candidate genes were then submitted to further haplotype analysis using million-scale single nucleotide polymorphisms (SNPs) from the X-set and the G-set. (4) Finally, 37 genes (19.3%) were found to be significant in the association between the QTL targeting traits and the haplotype variations by pair-wise comparison. (5) The phenotypic values for the haplotypes of each candidate were plotted. Three zinc finger (like) genes within two candidate QTL regions (qFe6-2 and qZn7), and three major GMC traits (Fe, Zn, and Cd) were picked as sample cases, in addition to non-exhausted cross validations, to elucidate this kind of association by trait value plotting. Taken together, our results, especially the 37 genes with favorable haplotype variations, will be useful for rice biofortification molecular breeding.

4.
Sci Rep ; 8(1): 6505, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695843

RESUMO

To facilitate developing rice varieties tolerant to salt stress, a panel of 208 rice mini-core accessions collected from 25 countries were evaluated for 13 traits associated with salt tolerance (ST) at the germination and seedling stages. The rice panel showed tremendous variation for all measured ST traits and eight accessions showing high levels of ST at either and/or both the germination and seedling stages. Using 395,553 SNP markers covering ~372 Mb of the rice genome and multi-locus mixed linear models, 20 QTN associated with 11 ST traits were identified by GWAS, including 6 QTN affecting ST at the germination stage and 14 QTN for ST at the seedling stage. The integration of bioinformatic with haplotype analyses for the ST QTN lets us identify 22 candidate genes for nine important ST QTN (qGR3, qSNK1, qSNK12, qSNC1, qSNC6, qRNK2, qSDW9a, qSST5 and qSST9). These candidate genes included three known ST genes (SKC1, OsTZF1 and OsEATB) for QTN qSNK1 qSST5 and qSST9. Candidate genes showed significant phenotypic differences in ST traits were detected between or among 2-4 major haplotypes. Thus, our results provided useful materials and genetic information for improving rice ST in future breeding and for molecular dissection of ST in rice.


Assuntos
Genes de Plantas/genética , Germinação/genética , Oryza/genética , Tolerância ao Sal/genética , Plântula/genética , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Haplótipos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
5.
Sci Data ; 4: 170195, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257136

RESUMO

The early-matured japonica (Geng) rice variety, Suijing18 (SJ18), carries multiple elite traits including durable blast resistance, good grain quality, and high yield. Using PacBio SMRT technology, we produced over 25 Gb of long-read sequencing raw data from SJ18 with a coverage of 62×. Using Illumina paired-end whole-genome shotgun sequencing technology, we generated 59 Gb of short-read sequencing data from SJ18 (23.6 Gb from a 200 bp library with a coverage of 59× and 35.4 Gb from an 800 bp library with a coverage of 88×). With these data, we assembled a single SJ18 genome and then generated a set of annotation data. These data sets can be used to test new programs for variation deep mining, and will provide new insights into the genome structure, function, and evolution of SJ18, and will provide essential support for biological research in general.


Assuntos
Genoma de Planta , Oryza/genética , Análise de Sequência de DNA
6.
PLoS One ; 10(7): e0131846, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161553

RESUMO

In the modern world, the grain mineral concentration (GMC) in rice (Oryza sativa L.) not only includes important micronutrient elements such as iron (Fe) and zinc (Zn), but it also includes toxic heavy metal elements, especially cadmium (Cd) and lead (Pb). To date, the genetic mechanisms underlying the regulation of GMC, especially the genetic background and G × E effects of GMC, remain largely unknown. In this study, we adopted two sets of backcross introgression lines (BILs) derived from IR75862 (a Zn-dense rice variety) as the donor parent and two elite indica varieties, Ce258 and Zhongguangxiang1, as recurrent parents to detect QTL affecting GMC traits including Fe, Zn, Cd and Pb concentrations in two environments. We detected a total of 22 loci responsible for GMC traits, which are distributed on all 12 rice chromosomes except 5, 9 and 10. Six genetic overlap (GO) regions affecting multiple elements were found, in which most donor alleles had synergistic effects on GMC. Some toxic heavy metal-independent loci (such as qFe1, qFe2 and qZn12) and some regions that have opposite genetic effects on micronutrient (Fe and Zn) and heavy metal element (Pb) concentrations (such as GO-IV) may be useful for marker-assisted biofortification breeding in rice. We discuss three important points affecting biofortification breeding efforts in rice, including correlations between different GMC traits, the genetic background effect and the G × E effect.


Assuntos
Ferro/metabolismo , Oryza/genética , Zinco/metabolismo , Alelos , Mapeamento Cromossômico , Cruzamentos Genéticos , Grão Comestível/genética , Grão Comestível/metabolismo , Genes de Plantas , Repetições de Microssatélites , Oryza/metabolismo , Locos de Características Quantitativas
7.
PLoS One ; 10(7): e0132060, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26162098

RESUMO

Source leaf/sink capacity (SS) traits are important determinants of grain yield (GY) of rice. To understand the genetic basis of the SS relationship in rice, five SS and GY traits of rice were genetically dissected using two reciprocal introgression populations. Seventy-three QTL affecting the SS and GY traits were identified, most of which were detected in one of the parental genetic backgrounds (GBs). Two major QTL at bins 4.7 (SS1) and 3.12 (SS2) were associated consistently with all measured SS and yield traits in both GBs across two contrasting environments. Strong interactions between SS1/SS2 and the detected QTL led us to the discovery of genetic networks affecting the SS and GY traits. The SS1 acted as a regulator controlling two groups of downstream QTL affecting the source leaf width and grain number per panicle (GNP). SS2 functioned as a regulator positively regulating different groups of downstream QTL affecting the source leaf length, GNP, grain weight, and GY. Map-based cloning of SS1 indicates that SS1 is NAL1 involved in polar auxin/IAA transport. Different alleles at NAL1 were apparently able to qualitatively and/or quantitatively control the IAA transport from the apical meristem to different plant tissues and thus regulate those downstream loci/pathways controlling different SS traits of rice. There was a functional allele and a non-functional mutation in the parents at each of the QTL downstream of SS1 or SS2, which were detectable only in the presence of the functional allele of SS1 or SS2. Our results provided direct evidence that SS and yield traits in rice are controlled by complex signaling pathways and suggest further improvement of rice yield potential with enhanced and balanced SS relationships can be achieved by accurately manipulating allelic combinations at loci in the SS1 and SS2 mediated pathways.


Assuntos
Redes Reguladoras de Genes , Oryza/crescimento & desenvolvimento , Oryza/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Alelos , Mapeamento Cromossômico , Clonagem Molecular , Mutação/genética , Folhas de Planta/genética , Proteínas de Plantas/genética
8.
Appl Biochem Biotechnol ; 165(5-6): 1253-63, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21870123

RESUMO

Heme oxygenase (HO, EC 1.14.99.3) catalyzes the oxidation of heme and performs vital roles in plant development and stress responses. Two HO isozymes exist in plants. Between these, HO-1 is an oxidative stress-response protein, and HO-2 usually exhibited constitutive expression. Although alfalfa HO-1 gene (MsHO1) has been investigated previously, HO2 is still poorly understood. In this study, we report the cloning and characterization of HO2 gene, MsHO2, from alfalfa (Medica sativa L.). The full-length cDNA of MsHO2 contains an ORF of 870 bp and encodes for 290 amino acid residues with a predicted molecular mass of 33.3 kDa. Similar to MsHO1, MsHO2 also appears to have an N-terminal transit peptide sequence for chloroplast import. Many conserved residues in plant HO were also conserved in MsHO2. However, unlike HO-1, the conserved histidine (His) required for heme-iron binding and HO activity was replaced by tyrosine (Tyr) in MsHO2. Further biochemical activity analysis of purified mature MsHO2 showed no HO activity, suggesting that MsHO2 may not be a true HO in nature. Semi-quantitative RT-PCR confirmed its maximum expression in the germinating seeds. Importantly, the expression levels of MsHO2 were up-regulated under sodium nitroprusside (SNP) and H(2)O(2) (especially) treatment, respectively.


Assuntos
Clonagem Molecular , Heme Oxigenase (Desciclizante)/química , Heme Oxigenase (Desciclizante)/genética , Medicago sativa/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Sequência de Aminoácidos , Heme Oxigenase (Desciclizante)/metabolismo , Medicago sativa/química , Medicago sativa/classificação , Medicago sativa/genética , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/classificação , Plantas/enzimologia , Plantas/genética , Alinhamento de Sequência
9.
PLoS One ; 6(1): e14541, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21283795

RESUMO

Great progress has been made in genetic dissection of quantitative trait variation during the past two decades, but many studies still reveal only a small fraction of quantitative trait loci (QTLs), and epistasis remains elusive. We integrate contemporary knowledge of signal transduction pathways with principles of quantitative and population genetics to characterize genetic networks underlying complex traits, using a model founded upon one-way functional dependency of downstream genes on upstream regulators (the principle of hierarchy) and mutual functional dependency among related genes (functional genetic units, FGU). Both simulated and real data suggest that complementary epistasis contributes greatly to quantitative trait variation, and obscures the phenotypic effects of many 'downstream' loci in pathways. The mathematical relationships between the main effects and epistatic effects of genes acting at different levels of signaling pathways were established using the quantitative and population genetic parameters. Both loss of function and "co-adapted" gene complexes formed by multiple alleles with differentiated functions (effects) are predicted to be frequent types of allelic diversity at loci that contribute to the genetic variation of complex traits in populations. Downstream FGUs appear to be more vulnerable to loss of function than their upstream regulators, but this vulnerability is apparently compensated by different FGUs of similar functions. Other predictions from the model may account for puzzling results regarding responses to selection, genotype by environment interaction, and the genetic basis of heterosis.


Assuntos
Epistasia Genética , Redes Reguladoras de Genes , Modelos Genéticos , Alelos , Variação Genética , Humanos , Vigor Híbrido , Fenótipo , Locos de Características Quantitativas
10.
Plant Mol Biol ; 59(1): 33-52, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16217600

RESUMO

Tremendous efforts have been taken worldwide to develop genome-wide genetic stocks for rice functional genomic (FG) research since the rice genome was completely sequenced. To facilitate FG research of complex polygenic phenotypes in rice, we report the development of over 20,000 introgression lines (ILs) in three elite rice genetic backgrounds for a wide range of complex traits, including resistances/tolerances to many biotic and abiotic stresses, morpho-agronomic traits, physiological traits, etc., by selective introgression. ILs within each genetic background are phenotypically similar to their recurrent parent but each carries one or a few traits introgressed from a known donor. Together, these ILs contain a significant portion of loci affecting the selected complex phenotypes at which allelic diversity exists in the primary gene pool of rice. A forward genetics strategy was proposed and demonstrated with examples on how to use these ILs for large-scale FG research. Complementary to the genome-wide insertional mutants, these ILs opens a new way for highly efficient discovery, candidate gene identification and cloning of important QTLs for specific phenotypes based on convergent evidence from QTL position, expression profiling, functional and molecular diversity analyses of candidate genes, highlights the importance of genetic networks underlying complex phenotypes in rice that may ultimately lead to more complete understanding of the genetic and molecular bases of quantitative trait variation in rice.


Assuntos
Genoma de Planta , Oryza/genética , Adaptação Fisiológica/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Desastres , Hibridização Genética , Endogamia , Desequilíbrio de Ligação , Oryza/crescimento & desenvolvimento , Fenótipo , Locos de Características Quantitativas/genética
11.
Yi Chuan ; 25(2): 208-10, 2003 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-15639856

RESUMO

A novel and simple CTAB-LiCl-based extraction method for high-quality and total RNA of rice embryo samples is developed. This method can efficiently eliminate the interference of polysaccharide and lipids rich in rice (Oryza sativa L.) embryo obtained under room temperature without using liquid nitrogen. The results of ultraviolet spectrophotometer and agarose gel electrophoresis analysis show that the obtained RNA has no obvious degradation and a good purity sufficient for further RT-PCR and RNA gel blotting. Therefore, it is also especially useful for the RNA extraction of plant material plenty of polysaccharide and lipids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...