Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Herb Med ; 16(2): 180-189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38706829

RESUMO

Rhizosphere microorganisms, as one of the most important components of the soil microbiota and plant holobiont, play a key role in the medicinal plant-soil ecosystem, which are closely related to the growth, adaptability, nutrient absorption, stress tolerance and pathogen resistance of host plants. In recent years, with the wide application of molecular biology and omics technologies, the outcomes of rhizosphere microorganisms on the health, biomass production and secondary metabolite biosynthesis of medicinal plants have received extensive attention. However, whether or to what extent rhizosphere microorganisms can contribute to the construction of the quality evaluation system of Chinese medicinal materials is still elusive. Based on the significant role of rhizosphere microbes in the survival and quality formation of medicinal plants, this paper proposed a new concept of rhizosphere microbial markers (micro-markers), expounded the relevant research methods and ideas of applying the new concept, highlighted the importance of micro-markers in the quality evaluation and control system of traditional Chinese medicines (TCMs), and introduced the potential value in soil environmental assessment, plant pest control and quality assessment of TCMs. It provides reference for developing ecological planting of TCMs and ensuring the production of high quality TCMs by regulating rhizosphere microbial communities.

2.
Mater Horiz ; 11(1): 238-250, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37909216

RESUMO

Ionogels have the advantages of thermal stability, non-volatility, ionic conductivity and environmental friendliness, and they can be used in the field of flexible electronics and soft robotics. However, their poor mechanical strength and complex preparation methods limit their practical application. Herein, we propose a simple strategy to improve the performance of ionogels by adjusting their phase separation behavior. In a polymer-ionic liquid (IL) binary system with an upper critical solution temperature (UCST) and Berghmans' point, the phase separation behavior will be frozen below the temperature corresponding to the Berghmans' point, and thus, the degree of phase separation can be adjusted by controlling the cooling rate. We found that a polyacrylamide (PAM)-IL binary system possessed a UCST and Berghmans' point and the resulting ionogels had excellent mechanical properties. Their tensile strength, tensile modulus, compressive strength and compressive modulus reached 31.1 MPa, 319.8 MPa, 122 MPa and 1.7 GPa, respectively, while these properties of the other ionogels were generally less than 10 MPa. Furthermore, they were highly transparent, stretchable, stable and multifunctional.

3.
Nutrients ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068829

RESUMO

Obesity is a chronic metabolic disease that can be induced by a high-fat diet (HFD) and predisposes to a variety of complications. In recent years, various bioactive substances, such as probiotics, prebiotics, and postbiotics, have been widely discussed because of their good anti-lipid and anti-inflammatory activities. In this paper, soybean protein isolate was used as a substrate to prepare the postbiotic. Compound prebiotics (galactose oligosaccharides, fructose oligosaccharides, and lactitol) preparation Aunulife Postbiotics and Prebiotics Composition (AYS) is the research object. Weight loss and bowel movements in mice induced by a high-fat diet were studied. Moreover, qualitative and quantitative analyses of small-molecule metabolites in AYS were performed to identify the functional molecules in AYS. After 12 weeks of feeding, the weight gain of mice that were fed with high-dose AYS (group H) and low-dose AYS (group L) from 4 to 12 weeks was 6.72 g and 5.25 g (p < 0.05), both of which were significantly lower than that of the high-fat diet (group DM, control group) group (7.73 g) (p < 0.05). Serum biochemical analysis showed that TC, TG, and LDL-C levels were significantly lower in mice from the H and L groups (p < 0.05). In addition, the fecal lipid content of mice in the L group reached 5.89%, which was significantly higher than that of the DM group at 4.02% (p < 0.05). The study showed that AYS changed the structure of the intestinal microbiota in mice on a high-fat diet, resulting in a decrease in the relative abundance of Firmicutes and Muribaculaceae and an increase in the relative abundance of Bacteroidetes, Verrucomicrobia, and Lactobacillus. The metabolomics study results of AYS showed that carboxylic acids and derivatives, and organonitrogen compounds accounted for 51.51% of the AYS metabolites, among which pantothenate, stachyose, betaine, and citrate had the effect of preventing obesity in mice. In conclusion, the administration of prebiotics and postbiotic-rich AYS reduces weight gain and increases fecal lipid defecation in obese mice, potentially by regulating the intestinal microbiota of mice on a high-fat diet.


Assuntos
Microbiota , Prebióticos , Animais , Camundongos , Obesidade/metabolismo , Aumento de Peso , Oligossacarídeos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Camundongos Endogâmicos C57BL
4.
Foods ; 12(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38137214

RESUMO

Huangqin tea (HQT), a Non-Camellia Tea derived from the aerial parts of Scutellaria baicalensis, is widely used in the north of China. The intervention effects of HQT on intestinal inflammation and tumors have been found recently, but the active ingredient and mechanism of action remain unclear. This study aimed to investigate the interactions between the potential flavonoid active components and gut microbiota through culture experiments in vitro combined with HPLC-UV, UPLC-QTOF-MS, and 16S rDNA sequencing technology. The results showed that the HQT total flavonoids were mainly composed of isocarthamidin-7-O-ß-D-glucuronide, carthamidin-7-O-ß-D-glucuronide, scutellarin, and others, which interact closely with gut microbiota. After 48 h, the primary flavonoid glycosides transformed into corresponding aglycones with varying degrees of deglycosylation. The composition of the intestinal microbiota was changed significantly. The beneficial bacteria, such as Enterococcus and Parabacteroides, were promoted, while the harmful bacteria, such as Shigella, were inhibited. The functional prediction results have indicated notable regulatory effects exerted by total flavonoids and scutellarin on various pathways, including purine metabolism and aminoacyl-tRNA biosynthesis, among others, to play a role in the intervention of inflammation and tumor-related diseases. These findings provided valuable insights for further in-depth research and investigation of the active ingredients, metabolic processes, and mechanisms of HQT.

5.
ACS Appl Mater Interfaces ; 15(48): 56181-56191, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38010839

RESUMO

Due to the flexibility and versatility of the layered crystal structure of layered double hydroxides (LDHs), they have shown great potential in various fields. However, LDH nanosheets (LDH-NSs) are easy to agglomerate, leading to the problem of accumulation, which hinders their further application. Accordingly, once LDHs are combined with solvent-free nanofluids (SFNs), the advantages of LDHs and SFNs could be combined to achieve an extraordinary performance. However, the stacked structure of traditional LDHs is not conducive to the exposure of hydroxyl functional groups, and hydroxyl sites are key to the conversion of LDHs to SFNs. Therefore, in this work, nanoflower-like LDHs (NFLs) with abundant exposed hydroxyl groups were prepared and combined with organic oligomers to achieve a solid-to-liquid transition. The formation mechanism of NFLs and the grafting mechanism of OS-PEA on their surface were identified. The prepared NFL-F3 still has good fluidity and dispersion stability in different solvents after storage for 100 days. The high-saturated grafting density on the surface of NFLs increased the steric hindrance effect of the nanoparticles, thereby improving the dispersion stability and reducing the viscosity of NFL-F3. Notably, the CO2 sorption performance of NFL-F3 is significantly improved, which is attributed to the voids between polymers, physical sorption, and good fluidity caused by high-saturation grafting on the surface of NFL-F3. Finally, by combining the sorption behavior and model fitting, it was confirmed that the physical effect was dominant in CO2 sorption by the NFL-F, which saved energy for the sorption-desorption process of its industrial application. Moreover, NFL-F3 has a good CO2/N2 separation performance and cycle stability. We envision that this general strategy will open up new insights into the construction of innovative low-viscosity LDH-based SFNs with high CO2 capacity and facilitate CO2/N2 selectivity and offer new directions for LDH utilizations.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37879671

RESUMO

Yolk-shell metal-organic framework (YS-MOF) liquids are candidate materials in large-size species with high-efficiency separation, owing to their hierarchical porosity, faster mass transfer, better compatibility, and higher solution processability than MOF liquids with micropores. Nevertheless, facile synthesis strategies of yolk-shell porous ionic liquids (YSPILs) with regulations of size and morphology are an ongoing challenge. Herein, we propose a general strategy to construct YSPILs based on Z67@PDA with tunable core sizes and morphologies. Benefiting from the unique hierarchical yolk-shell structure, as-prepared YSPILs exhibit promise in C3H6/C3H8 capture and separation with the increased sizes of core in yolk-shell ZIF-67@PDA. Advanced YS-MOF liquids have improved the adsorption properties and increased our ability to tailor chemical composition and pore architecture. Impressively, the adsorption capacity of C3H6 and C3H8 of YSPILs exhibits an approximately 3-fold enhancement compared with that of the neat ILs, confirming that the accessible porosities are retained. Effective C3H6/C3H8 separation performance of YSPILs over PILs based on ZIF-67, revealing the hierarchical porosity of YS-Z67@PDA liquids, benefits larger-size gas separation. Therefore, we believe that this work can not only help us to rationally design novel hierarchically porous ionic liquids but also promote candidate applications in large-size species separation, catalysis, and nanoreactors.

7.
Front Plant Sci ; 14: 1243724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711307

RESUMO

Introduction: Paeonia ostii T. Hong & J.X. Zhang (s.s.) (Chinese name, Fengdan) is a widely cultivated food-medicine plant in China, in which root bark, seed kernels, and flowers are utilized for their medicinal and edible values. However, other parts of the plant are not used efficiently, in part due to a poor understanding of their chemical composition and potential biological activity. Methods: Untargeted ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-Q-TOF-MS) metabolomics was applied to characterize the metabolic profiles of 10 different parts of P. ostii. Results and discussion: A total of 160 metabolites were alternatively identified definitely or tentatively, which were significantly different in various plant parts by multivariate statistical analysis. Quantitative analysis showed that underutilized plant parts also contain many active ingredients. Compared with the medicinal part of root bark, the root core part still contains a higher content of paeoniflorin (17.60 ± 0.06 mg/g) and PGG (15.50 ± 2.00 mg/g). Petals, as an edible part, contain high levels of quercitrin, and stamens have higher methyl gallate and PGG. Unexpectedly, the ovary has the highest content of methyl gallate and rather high levels of PGG (38.14 ± 1.27 mg/g), and it also contains surprisingly high concentrations of floralalbiflorin I. Paeoniflorin (38.68 ± 0.76 mg/g) is the most abundant in leaves, and the content is even higher than in the root bark. Branches are also rich in a variety of catechin derivatives and active ingredients such as hydrolyzable tannins. Seed kernels also contain fairly high levels of paeoniflorin and albiflorin. Fruit shells still contain a variety of components, although not at high levels. Seed coats, as by-products removed from peony seeds before oil extraction, have high contents of stilbenes, such as trans-gnetin H and suffruticosol B, showing significant potential for exploitation. Except for the seed kernels, extracts obtained from other parts exhibited good antioxidant activity in DPPH, ABTS, and ferric ion reducing antioxidant power (FRAP) assays (0.09-1.52 mmol TE/g). Five compounds (gallic acid, PGG, trans-resveratrol, kaempferol, and quercitrin) were important ingredients that contributed to their antioxidant activities. Furthermore, P. ostii seed cakes were first reported to possess agonistic activity toward CB1/CB2 receptors. This study provides a scientific basis for the further development and utilization of P. ostii plant resources.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36882929

RESUMO

Solar energy, as renewable energy, has paid extensive attention for solar thermal utilization due to its unique characteristics such as rich resources, easy access, clean, and pollution-free. Among them, solar thermal utilization is the most extensive one. Nanofluid-based direct absorption solar collectors (DASCs), as an important alternative method, can further improve the solar thermal efficiency. Notably, the stability of photothermal conversion materials and flowing media is critical to the performance of DASC. Herein, we first proposed novel Ti3C2Tx-IL-based nanofluids by the electrostatic interaction, which consists of functional Ti3C2Tx modified with PDA and PEI as a photothermal conversion material and ionic liquid with low viscosity as the flow medium. Ti3C2Tx-IL-based nanofluids exhibit excellent cycle stability, wide spectrum, and efficient solar energy absorption performance. Besides, Ti3C2Tx-IL-based nanofluids maintain liquid state in a range of -80 to 200 °C, and its viscosity was as low as 0.3 Pa·s at 0 °C. Moreover, the equilibrium temperature of Ti3C2Tx@PDA-IL at a very low mass fraction of 0.04% reached 73.9 °C under 1 Sun, indicating an excellent photothermal conversion performance. Furthermore, the application of nanofluids in photosensitive inks has been preliminarily explored, which is expected to play a role in the fields of injectable biomedical materials and photo/electric double-generation thermal and hydrophobic anti ice coatings.

9.
Nutrients ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36839197

RESUMO

Probiotics have received wide attention as a potential way to alleviate gastrointestinal (GI) motility disorders. Herein, we investigated the effects of Lacticaseibacillus paracasei JY062, Lactobacillus gasseri JM1, and the probiotic combination at 5 × 109 CFU/mL on mice induced by loperamide and explored the possible underlying mechanisms in GI motility disorder. After two weeks of probiotic intervention, the results indicated that the probiotic combination alleviated GI motility disorder better. It increased the secretion of excitatory GI regulators motilin, gastrin, and 5-hydroxytryptamine (5-HT) and decreased the secretion of the inhibitory GI regulators peptide YY and nitric oxide (NO), except vasoactive intestinal peptide. 5-HT and NO were related to the mRNA expression of 5-HT4 receptor and nitric oxide synthase, respectively. The intervention of probiotic combination also increased the number of interstitial cells of Cajal and the expression of SCF/c-kit protein. In addition, it also increased the abundance of beneficial bacteria (Lactobacillus, Rikenellaceae, and Clostridiaceae_Clostridium) and improved the contents of short-chain fatty acids in cecum contents of mice. In conclusion, the probiotic combination of L. paracasei JY062 and L. gasseri JM1 has the potential to alleviate GI motility disorders by balancing intestinal homeostasis.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Lactobacillus gasseri , Probióticos , Animais , Camundongos , Lacticaseibacillus , Serotonina , Probióticos/farmacologia , Motilidade Gastrointestinal
10.
RSC Adv ; 13(5): 3186-3192, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36756433

RESUMO

The ultra violet (UV) resistance of epoxy resins has been paid more and more attention, and the development of highly efficient UV resistant materials is critical. Therefore, we showed liquid-like graphene oxide (GO)/silicon dioxide (SiO2)-based derivatives for UV resistance of epoxy resins. To be specific, SiO2 nanoparticles were deposited in situ on the surface of GO. Subsequently, a black, homogeneous and solvent-free GO/SiO2 nanofluid was prepared by grafting organosilanes (KH560) and polyetheramines (M2070) on the surface of GO/SiO2. Furthermore, the solvent-free GO/SiO2 nanofluid/epoxy resin composites were also prepared. The bending properties before and after UV irradiation of the nanocomposites at room temperature were investigated to reveal the role of the interphase. The toughening mechanism of GO/SiO2 nanofluid was elucidated by observing the fracture surface. As expected, the loss of bending strength of the resin resulting from UV illumination was efficiently reduced by the GO/SiO2 nanofluid. This may be attributed to the excellent anti-UV aging properties of GO and SiO2 nanoparticles. Moreover, the GO/SiO2 nanofluid can provide excellent bending resistance for epoxy resin both before and after illumination, owing to its great compatibility with epoxy resin by organic chains and hindrance to crack propagation by nano cores.

11.
Biomed Pharmacother ; 160: 114394, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36774724

RESUMO

Rheum lhasaense A. J. Li et P. K. Hsiao, a stout herb plant from the Polygonaceae, is a typical Tibetan folk herb with heat-clearing and detoxifying effects, but does not have the typical laxative effect compared with other rhubarb plants. Nevertheless, its chemical composition and pharmacological activities still lack in-depth research. The present study endeavored to analyze the possible phytochemical constituents in R. lhasaense and explore the main compound piceatannol-3'-O-ß-D-glucopyranoside (PG) effect on cognitive impairment and its underlying mechanism. The chemical profile of R. lhasaense discovered 46 compounds, including 27 stilbenoids and 13 gallotannins using UPLC-Q-TOF-MS/MS. The UPLC determined the contents of 6 main stilbenoids, among which the content of PG was the highest, up to 61.06 mg/g. Moreover, behavioral tests showed that PG (40 mg/kg and 160 mg/kg) administration markedly ameliorated memory impairments of scopolamine-induced mice. Biochemical parameters showed that PG treatment alleviated the levels of Ach, AchE, and inflammatory factors while elevating the levels of antioxidants in mice. In addition, network pharmacology was performed to reveal PG exert an mild cognitive impairment effect by participating in neurodegenerative disease pathways, proliferation and apoptosis-, and inflammation-related pathways. Eventually, the results of molecular docking and the qRT-PCR revealed that PG down-regulated the mRNA expressions of MMP3, MMP9 and BACE1 in cognitive impairment mice brain tissue. In conclusion, our results demonstrated that PG mitigated scopolamine-induced cognitive dysfunction in mice by targeting the BACE1-MMP3/9 pathway, and PG might be a promising mild AD drug candidate.


Assuntos
Doenças Neurodegenerativas , Rheum , Estilbenos , Camundongos , Animais , Rheum/química , Espectrometria de Massas em Tandem , Secretases da Proteína Precursora do Amiloide , Metaloproteinase 3 da Matriz , Simulação de Acoplamento Molecular , Ácido Aspártico Endopeptidases , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Estilbenos/química , Derivados da Escopolamina
12.
Prep Biochem Biotechnol ; 53(3): 308-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35670651

RESUMO

Purification of total flavonoids from Ginkgo biloba flowers (GBF) extracts were studied using six resins. Adsorption-desorption experiments indicated that polyamide resin is the most suitable resin. The optimal purification process of total flavonoids of GBF was as follows: a loading concentration of 5.85 mg/mL, a loading volume of 1 bed volume (BV), a loading flow rate of 2 BV/h, a water volume of 2.67 BV, and a desorption solution of 40% ethanol. Under these conditions, the maximum purity of total flavonoids was 37.1 ± 1.1%. The antioxidant activity of purified flavonoids was further evaluated in vitro. It showed that the 40% ethanol purified fraction (Fr. B) group had the strongest antioxidant activity of the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity concentration for 50% of maximal effect (EC50, 145.4 ± 13.8 µg/mL) and ferric reducing ability (2.5 ± 0.2 mM FeSO4 equivalent mg-1 Fr. B). In addition, at the concentration of 160 µg/mL, the Fr. B strikingly increased the viability rate of hydrogen peroxide stimulated PC-12 cells to normal levels (***p < 0.001). This method provides a basis for the application and development of GBF resources. It indicated that the purified GBF flavonoids can be used as a source of potential antioxidant.


Assuntos
Flavonoides , Ginkgo biloba , Flavonoides/farmacologia , Flavonoides/química , Ginkgo biloba/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia , Flores
13.
ACS Appl Mater Interfaces ; 14(42): 48106-48122, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36240508

RESUMO

Limited durability and complex materials restrict the application of superhydrophobic fabrics in daily life. In this work, gellable fluorinated block copolymer poly(dodecafluoroheptyl methacrylate)-block-poly(3-(triethoxysilyl)propyl methacrylate) (PDFMA-b-PTEPM) was used to fabricate adhesive-free superhydrophobic poly(ethylene terephthalate) (PET) fabrics via a simple dip-coating technology and sol-gel reaction. The growth of silica nanoparticles builds up a rough hierarchical structure and provides sol-gel reaction sites of PTEPM segments. The grafting of block copolymer significantly reduced the surface free energy of the fabrics, resulting in an excellent superhydrophobicity with a water contact angle of 160.2°. Benefiting from extensive chemical bond grafting and cross-linking of the PTEPM segment, the fabric exhibits excellent durability in mechanical abrasion, chemical treatment, and washing. The coating has withstood 50 sandpaper abrasion cycles and 400 soft friction cycles and can maintain superhydrophobic properties in various solvents, freezing and a wide pH range. These superhydrophobic fabrics with a long life span possess self-cleaning, anti-icing, oil-water separation, and self-healing capabilities. The multifunctional fabrics developed in this study are durable and easy to produce, possessing the potential for applications in industry and daily life.

14.
ACS Omega ; 7(25): 21664-21674, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35785329

RESUMO

Despite many important industrial applications, epoxy resin (EP) suffers from high flammability and toxicity emission, extremely hampering their applications. To circumvent the problem, core-shell structured ZIF67@ZIF8 is successfully synthesized and further functionalized with phytic acid (PA) to obtain PA-ZIF67@ZIF8 hybrids. Then, it is used as an efficient flame retardant to reduce the fire risk of EP. The fire test results show a significant reduction in heat and smoke production. Compared with EP, incorporating 5.0 wt % PA-ZIF67@ZIF8 into EP, the peak heat release rate, total heat release, and peak carbon monoxide production are dramatically reduced by 42.2, 33.0, and 41.5%, respectively. Moreover, the EP/PA-ZIF67@ZIF8 composites achieve the UL-94 V-0 rating and the limiting oxygen index increases by 29.3%. These superior fire safety properties are mainly attributed to the excellent dispersion and the catalytic effect of metal oxide and phosphorus-containing compounds. This work provides an efficient strategy for preparing a promising ZIF-based flame retardant for enhancing flame retardancy and smoke toxicity suppression of EP.

15.
ACS Appl Mater Interfaces ; 14(19): 22544-22553, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35511465

RESUMO

The performance of graphene aerogels (GAs) is based on the microstructure. However, GAs face a challenge of simultaneously controlling the size and alignment of pores strategically. Herein, we initially proposed a simple strategy to construct GAs with an adjustable structure based on the emulsion and ice dual template methods. Specifically, GAs with a honeycomb structure prepared by conventional freezing (CGAs) exhibited a high specific surface of 176 m2/g, superelasticity with a compressive strain of 95%, isotropic compression and thermal insulation performances, as well as an excellent absorption capacity of 150-550 g/g. Instead, the GAs with a bamboo-like network frozen by unidirectional freezing (UGAs) showed anisotropy in compression and thermal insulation behavior. Furthermore, UGAs exhibited incredible special stress (7.9 kPa cm3/mg) along the axial direction twice than that of the radial direction. Meanwhile, the apparent temperature of UGAs was only 45.6 °C when placed on a 120 °C hot stage along the radial direction. Remarkably, the properties of CGAs and UGAs were significantly improved with the adjustment of the microstructure.

16.
ACS Appl Mater Interfaces ; 14(2): 3233-3243, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34994543

RESUMO

High-performance films via layer-by-layer assembly of two-dimensional (2D) materials would provide all possibilities for the development of modern integrated electronics. However, the stacked structure between nanosheets and large-scale fabrication still remain a great challenge. Herein, Fe3O4/expanded graphite (EG) papers are fabricated via in situ oxidation of ferrocene onto EG nanosheets, followed by a continuous roll-in process. Upon mechanical compaction, the self-interlocked structures driven by close overlapping and hooking of nanosheets in Fe3O4/EG (FG) composites remarkably facilitate the construction of phonon and electron transmission channels and improve mechanical strength. FG papers exhibit prominent shielding effectiveness (67.1 dB at ∼100 µm) with enhanced absorptivity (∼0.1, surpassing lots of conductive film materials), stemming from the synergistic effect of electrical and magnetic properties. Also, the electromagnetic interference (EMI) shielding performance shows prominent reliability after bending (2000 cycles) and ultrasonic treatment (30 min). The corresponding tensile strength reaches 35.8 MPa; meanwhile, the corresponding in-plane thermal conductivity coefficient is as high as 191.7 W/(m·K), which can rapidly and efficiently accelerate heat dissipation. In particular, FG papers also reveal rapid response, controllable, and highly stable Joule heating performance and present promising prospects in the fields of radiation-proof clothing, flexible heaters, portable wearable devices, and aerospace.

17.
Plant J ; 110(1): 166-178, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997660

RESUMO

Many rice microRNAs have been identified as fine-tuning factors in the regulation of agronomic traits and immunity. Among them, Osa-miR535 targets SQUAMOSA promoter binding protein-like 14 (OsSPL14) to positively regulate tillers but negatively regulate yield and immunity. Here, we uncovered that Osa-miR535 targets another SPL gene, OsSPL4, to suppress rice immunity against Magnaporthe oryzae. Overexpression of Osa-miR535 significantly decreased the accumulation of the fusion protein SPL4TBS -YFP that contains the target site of Osa-miR535 in OsSPL4. Consistently, Osa-miR535 mediated the cleavage of OsSPL4 mRNA between the 10th and 11th base pair of the predicted binding site at the 3' untranslated region. Transgenic rice lines overexpressing OsSPL4 (OXSPL4) displayed enhanced blast disease resistance accompanied by enhanced immune responses, including increased expression of defense-relative genes and up-accumulated H2 O2 . By contrast, the knockout mutant osspl4 exhibited susceptibility. Moreover, OsSPL4 binds to the promoter of GH3.2, an indole-3-acetic acid-amido synthetase, and promotes its expression. Together, these data indicate that Os-miR535 targets OsSPL4 and OsSPL4-GH3.2, which may parallel the OsSPL14-WRKY45 module in rice blast disease resistance.


Assuntos
Magnaporthe , Oryza , Proteínas de Transporte/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Magnaporthe/metabolismo , Oryza/metabolismo , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112194, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34749193

RESUMO

Mg, Zn and Ce-doped CuO/HA composites were prepared by a two-step sol-gel and hydrothermal process. SEM images showed a spherical appearance of HA and a needle-like morphology for doped CuO. XRD patterns revealed that all doped CuO/HA composites exhibited a hexagonal crystal structure of HA and a monoclinic crystal structure of CuO with no impurities. ICP analysis indicated that with the increase of loading amount of doped CuO, the concentrations of Cu2+ ions and doping ions released from composites increased. Moreover, CuO/HA composites exhibit improved antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as compared with HA. When the loading amount of doped CuO in composites increased to 15 wt%, the composites exhibited the best antibacterial activity and complete bacterial growth inhibition effect. Furthermore, the CCK-8 assay revealed that the doped CuO/HA composites are noncytotoxic and can promote the proliferation of osteosarcoma cells. This work highlights the potential of the doped CuO/HA composites with significant antibacterial activity, bioactivity and cell compatibility for potential biomedical applications in dental implants and bone regeneration.


Assuntos
Cobre , Durapatita , Antibacterianos/farmacologia , Cobre/farmacologia , Escherichia coli , Óxidos , Staphylococcus aureus
19.
Bioresour Technol ; 347: 126595, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34953992

RESUMO

Hydrogen has become a research highlight by virtue of its clean energy production technology and high energy content. The technology of biohydrogen production from biological waste via fermentation has lower costs, provides environment-friendly methods regarding energy balance, and creates a pathway for sustainable utilization of massive agricultural waste. However, biohydrogen production is generally limited by lower productivity. Many studies have been conducted aimed at improving biohydrogen production efficiency. Hence, this review is intended to describe improving routes for biohydrogen production from agricultural waste and highlights recent advances in these approaches. In addition, the critical factors affecting biohydrogen production, including the pretreatment method, substrate resource, fermentation conditions, and bioreactor design, were also comprehensively discussed along with challenges and future prospects.


Assuntos
Hidrogênio , Reciclagem , Agricultura , Biocombustíveis , Reatores Biológicos , Fermentação , Hidrogênio/análise
20.
ACS Appl Mater Interfaces ; 13(45): 53541-53552, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34726373

RESUMO

Torealize intelligent and personalized medicine, it is a huge challenge to develop a hydrogel dressing that can be used as a sensor to monitor human health in real-time while promoting wound healing. Herein, an injectable, self-healing, and conductive chitosan-based (CPT) hydrogel with pH responsiveness and intrinsic antibacterial properties was fabricated via a Schiff base linkage and a hydrogen bond. Due to the introduction of Schiff base bonds, the injectable CPT hydrogel exhibits various excellent properties, such as pH responsiveness to sol-gel transition, self-healing properties, and broad-spectrum antibacterial properties even without additional antibacterial agents. In vitro experiments verify the excellent biocompatibility of the as-prepared hydrogel. An in vivo experiment in a mouse full-thickness skin-wound model was performed to confirm the outstanding effect on wound healing. Meanwhile, as epidermal sensors, the conductive hydrogel that perceives various human activities in real-time could provide the real-time analysis of the patient's healthcare information. Based on these excellent properties, the CPT hydrogel, as a biological dressing with a sensing function, lays a solid foundation for the further realization of personalized medicine.


Assuntos
Antibacterianos/farmacologia , Quitosana/farmacologia , Escherichia coli/efeitos dos fármacos , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/síntese química , Quitosana/química , Condutividade Elétrica , Epiderme , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...