Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Meas Sci Au ; 1(3): 131-138, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34939075

RESUMO

In this work, we introduce a novel method for visualization and quantitative measurement of the vesicle opening process by correlation of vesicle impact electrochemical cytometry (VIEC) with confocal microscopy. We have used a fluorophore conjugated to lipids to label the vesicle membrane and manipulate the membrane properties, which appears to make the membrane more susceptible to electroporation. The neurotransmitters inside the vesicles were visualized by use of a fluorescence false neurotransmitter 511 (FFN 511) through accumulation inside the vesicle via the neuronal vesicular monoamine transporter 2 (VMAT 2). Optical and electrochemical measurements of single vesicle electroporation were carried out using an in-house, disk-shaped, gold-modified ITO (Au/ITO) microelectrode device (5 nm thick, 33 µm diameter), which simultaneously acted as an electrode surface for VIEC and an optically transparent surface for confocal microscopy. As a result, the processes of adsorption, electroporation, and opening of single vesicles followed by neurotransmitter release on the Au/ITO surface have been simultaneously visualized and measured. Three opening patterns of single isolated vesicles were frequently observed. Comparing the vesicle opening patterns with their corresponding VIEC spikes, we propose that the behavior of the vesicular membrane on the electrode surface, including the adsorption time, residence time before vesicle opening, and the retention time after vesicle opening, are closely related to the vesicle content and size. Large vesicles with high content tend to adsorb to the electrode faster with higher frequency, followed by a shorter residence time before releasing their content, and their membrane remains on the electrode surface longer compared to the small vesicles with low content. With this approach, we start to unravel the vesicle opening process and to examine the fundamentals of exocytosis, supporting the proposed mechanism of partial or subquantal release in exocytosis.

2.
Chem Commun (Camb) ; 56(60): 8488-8491, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32588858

RESUMO

Here, a near-infrared (NIR) light-controlled, ultrasensitive one-step photoelectrochemical (PEC) strategy was constructed to simultaneously detect cell apoptosis indicators, phosphatidylserine (Pho) and sodium-potassium adenosine triphosphatase (Sat), on living cancer cells. Using NIR light as excitation, the signal probe methylene blue (Tagkinetic) could be released, leading to a gradually decreased photocurrent signal Ikinetic; meanwhile, the photocurrent Istable of the signal probe carbon quantum dots (Tagstable) remained stable. The simultaneous detection of Pho and Sat could be achieved based on rapid one-step PEC detection under single NIR light with the assistance of a smart signal decryption strategy with Ikinetic and Istable. Importantly, this proposal provides more effective drug candidates with milder pharmaceutical effect but improved safety.


Assuntos
Apoptose , Técnicas Eletroquímicas/métodos , Raios Infravermelhos , Fosfatidilserinas/análise , ATPase Trocadora de Sódio-Potássio/análise , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Cinética , Azul de Metileno/química , Microscopia Confocal , Pontos Quânticos/química
3.
Chemistry ; 25(16): 4087-4092, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30675925

RESUMO

A new cosensitization photoelectrochemical (PEC) strategy was established by using a donor-acceptor-type photoactive material, poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7-Th), as a signal indicator, which was cosensitized with bis(4,4'dicarboxyl-2,2'-bipyridyl)(4,5,9,14-tetraazabenzo[b]triphenylene)ruthenium(II) ([Ru(dcbpy)2 dppz]2+ ) embedded in the grooves of the DNA duplex and fullerene (nano-C60 ) immobilized on the surface of DNA nanoflowers for microRNA assay. [Ru(dcbpy)2 dppz]2+ and nano-C60 could effectively enhance the photoelectric conversion efficiency (PCE) of PTB7-Th as a result of well-matched energy levels among nano-C60 , [Ru(dcbpy)2 dppz]2+ and PTB7-Th, leading to a clearly enhanced photocurrent signal. Meanwhile, a target recycling magnification technique based on duplex-specific nuclease was applied in this work to obtain higher detection sensitivity. The proposed biosensor demonstrated excellent analytical properties within a linear detection range of 2.5 fm to 2.5 nm and a limit of detection down to 0.83 fm. Impressively, this cosensitization PEC strategy offers an effective and convenient avenue to significantly improve the PCE of a photoactive material, resulting in a remarkably improved photocurrent signal for ultrasensitive and highly accurate detection of various targets.


Assuntos
Complexos de Coordenação/química , Fulerenos/química , MicroRNAs/análise , Nanocompostos/química , Rutênio/química , Bioensaio/métodos , Técnicas Eletroquímicas/métodos , Ouro/química , Limite de Detecção , Nanopartículas Metálicas , Tamanho da Partícula , Processos Fotoquímicos , Sensibilidade e Especificidade , Propriedades de Superfície
4.
Anal Chem ; 90(20): 12278-12283, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30227710

RESUMO

Here, a photoelectrochemical (PEC) biosensor was established by a cosensitization strategy with cascade energy level arrangement for ultrasensitive detection of prostate-specific antigen (PSA). The proposed cosensitization strategy was based on the well-matched energy level arrangement of four kinds of organic photoactive materials, in which poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2- b:4,5- b']dithiophene-2,6-diyl- alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4- b]thiophene-4,6-diyl} (PTB7-Th) was used as the photoactive material and perylenetetracarboxyl diimide (PDI), fullerene (nano-C60), and polyaniline (PANI) were employed as the sensitizers. The resulting PTB7-Th/PDI/nano-C60/PANI cascade cosensitization structure with narrow energy level gradient (<0.54 eV) could effectively improve electron transfer capability, obviously raise light energy utilization and significantly enhance photoelectric conversion efficiency, leading to dramatically enhanced photocurrent response. Using PSA as a target model, the proposed PEC biosensor exhibited high sensitivity and excellent stability with a wide detection range from 1 fg/mL to 0.1 ng/mL and a detection limit of 0.43 fg/mL. Moreover, the proposed PEC biosensor provides a cascade cosensitization strategy that could significantly improve PEC performances and open up a promising platform to establish high selectivity, stability, and ultrasensitive analytical techniques.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Antígeno Prostático Específico/análise , Compostos de Anilina/química , Fulerenos/química , Humanos , Estrutura Molecular , Processos Fotoquímicos , Polímeros/química , Tiofenos/química
5.
Chem Commun (Camb) ; 54(77): 10897-10900, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30206633

RESUMO

Herein, an adenosine triphosphate (ATP)-fueled nucleic acid signal amplification strategy based on toehold-mediated strand displacement (TMSD) and fluorescence resonance energy transfer (FRET) was proposed for highly sensitive detection of microRNA-21. More importantly, the target microRNA-21 could be regenerated with ATP as the fuel rather than a nucleotide segment in conventional approaches, which made the proposed strategy simple and efficient due to the high affinity and strength of the aptamer-target interaction.


Assuntos
Trifosfato de Adenosina/metabolismo , Aptâmeros de Nucleotídeos/química , MicroRNAs/análise , Técnicas de Amplificação de Ácido Nucleico , Trifosfato de Adenosina/química , Aptâmeros de Nucleotídeos/metabolismo , Transferência Ressonante de Energia de Fluorescência
6.
Anal Chem ; 90(12): 7474-7479, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29806453

RESUMO

Heavy metal ions are persistent environmental contaminants and pose a great threat to human health, which has prompted demand for new methods to selectively identify and detect these metal ions. Herein, a novel fluorescent assay based on a rolling-circle-amplification (RCA)-assisted multisite-strand-displacement-reaction (SDR) signal-amplification strategy was proposed for the ultrasensitive detection of heavy metal ions with lead ions (Pb2+) as a model. The proposed strategy not only achieved the target recycling but also introduced RCA induced by released DNAzyme. Most importantly, the RCA product was adapted as the initiator to provide multiple sites for SDR, which could displace signal duplexes from RCA products to effectively avoid the self-quenching of signal-probe assembly on the RCA product. Therefore, the amplification efficiency and the detection sensitivity could be improved significantly. As expected, the proposed strategy demonstrated good performance for the determination of Pb2+ with a linear range from 0.1 to 50 nM and a detection limit down to 0.03 nM. Using this strategy for intracellular-Pb2+ detection, a favorable property was obtained. Furthermore, the proposed strategy could be also expanded for the determination of microRNA, proteins, and other biomolecules, offering a novel avenue for environmental assays and clinical diagnostics.


Assuntos
DNA Catalítico/metabolismo , Chumbo/análise , Técnicas de Amplificação de Ácido Nucleico , Linhagem Celular Tumoral , Humanos , Chumbo/metabolismo , Espectrometria de Fluorescência
7.
Anal Chem ; 90(10): 6096-6101, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29676147

RESUMO

In this work, a highly sensitive photoelectrochemical (PEC) assay was constructed based on a donor-acceptor (D-A)-type material, poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl- alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4- b]thiophene-4,6-diyl} (PTB7-Th), as the photoactive material and polyaniline (PANI) in situ deposited on the surface of PTB7-Th as the signal enhancer. Initially, PTB7-Th, which contains an electron-rich unit as donor and an electron-deficient unit as acceptor with an easy separation of electron-hole pairs and intermolecular electron transfer, provided an excellent photocurrent response. Subsequently, an input target thrombin (TB) was converted to an output single-stranded DNA by a protein converting strategy. The obtained single-stranded DNA thus triggered a rolling circle amplification (RCA) to form a tandem multihairpin DNA nanostructure, which could function as a skeleton for immobilizing manganese porphyrin (MnTMPyP). In the presence of H2O2 and aniline, a PANI layer could be in situ deposited onto the tandem multihairpin DNA nanostructure with use of MnTMPyP as catalyst, leading to a significantly enhanced photocurrent for the detection of TB. The proposed PEC assay presented a wide detection range of 100 fM to 10 nM with a limit of detection (LOD) of 34.6 fM. Furthermore, the proposed strategy provides a PEC analysis method based on PTB7-Th that can significantly improve the photoelectric conversion efficiency and opens an intriguing avenue to establish low background, ultrasensitive, and highly stable analytical techniques.


Assuntos
Compostos de Anilina/química , Técnicas Eletroquímicas , Fármacos Fotossensibilizantes/química , Trombina/análise , Estrutura Molecular , Processos Fotoquímicos , Propriedades de Superfície
8.
ACS Appl Mater Interfaces ; 9(48): 42111-42120, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29111661

RESUMO

Ultrasensitive and rapid quantification of the universal energy currency adenosine triphosphate (ATP) is an extremely critical mission in clinical applications. In this work, a "signal-off" photoelectrochemical (PEC) biosensor was designed for ultrasensitive ATP detection based on a fullerene (C60)-decorated Au nanoparticle@MoS2 (C60-Au NP@MoS2) composite material as a signal indicator and a p-type PbS quantum dot (QD) as an efficient signal quencher. Modification of wide band gap C60 with narrow band gap MoS2 to form an ideal PEC signal indicator was proposed, which could significantly improve photocurrent conversion efficiency, leading to a desirable PEC signal. In the presence of p-type PbS QDs, the PEC signal of n-type C60-Au NP@MoS2 was effectively quenched because p-type PbS QDs could compete with C60-Au NP@MoS2 to consume light energy and electron donor. Besides, the conversion of a limited amount of target ATP into an amplified output PbS QD-labeled short DNA sequence (output S1) was achieved via target-mediated aptazyme cycling amplification strategy, facilitating ultrasensitive ATP detection. The proposed signal-off PEC strategy exhibited a wide linear range from 1.00 × 10-2 pM to 100 nM with a low detection limit of 3.30 fM. Importantly, this proposed strategy provides a promising platform to detect ATP at ultralow levels and has potential applications, including diagnosis of ATP-related diseases, monitoring of diseases progression and evaluation of prognosis.


Assuntos
Pontos Quânticos , Trifosfato de Adenosina , Técnicas Biossensoriais , Dissulfetos , Técnicas Eletroquímicas , Fulerenos , Ouro , Chumbo , Nanopartículas Metálicas , Molibdênio , Processos Fotoquímicos , Sulfetos
9.
ACS Appl Mater Interfaces ; 9(45): 39812-39820, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29053251

RESUMO

Herein, an ultrasensitive electrochemiluminescent (ECL) strategy was designed based on the fabrication of a multi-interface DNA micronet-carrier via layer by layer hybridization of double-stranded DNAzyme-substrate to immobilize large amounts of ECL indicator, [Ru(dcbpy)2dppz]2+, in double-strand DNA on the electrode surface, generating enhanced ECL signals. When the double-stranded structures were cleaved circularly via Pb2+ in the detection sample, the ECL indicator was released, which resulted in a decreased ECL signal associated with the concentration of Pb2+, that had higher sensitivity and wider linear range. As a result, the developed ECL strategy exhibited a linear range from 50 pM to 500 µM with a detection limit of 4.73 pM, providing an alternative analytical strategy with excellent properties, including a high sensitivity and a wide linear range. Importantly, the ECL strategy could be readily expanded for various metal ions, proteins, nucleotide sequences, and cells, offering a simple and efficient technology for both environmentally safe assays and clinical diagnostics.


Assuntos
DNA/química , Técnicas Biossensoriais , Chumbo , Limite de Detecção , Medições Luminescentes
10.
Anal Chem ; 89(17): 9445-9451, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28749132

RESUMO

A universal ratiometric photoelectrochemical (PEC) bioassay, which could be readily expanded for ultrasensitive determination of various targets in complex biological matrixes, was established by coupling a target-nucleotide transduction-amplification with DNA nanomachine mediated electron-transfer tunneling distance regulation strategies. With the help of target-nucleotide transduction-amplification strategy, the one input target signal could be transducted to corresponding multiple output DNA signals by nucleotide specific recognition technology, simultaneously leading to an efficient signal amplification for target. Then the output DNA could initiate the formation of four-way junction DNA nanomachine through binding-induced combination, by which the electron-transfer tunneling distance between photoactive materials and sensing interface could be regulated, simultaneously resulting an enhanced photocurrent signal from SiO2@methylene blue (SiO2@MB) as wavelength-selective photoactive material in close proximity to sensing interface and a reduced photocurrent signal from another wavelength-selective photoactive material CdS quantum dots (CdS QDs) away from sensing interface for photocurrent signal ratio calculation. Using microRNA-141 (miRNA-141) as target model, the constructed biosensor demonstrated favorable accuracy and excellent sensitivity down to the femtomolar level. Impressively, the proposed assay overcame the heavy dependence of target on photoactive materials in current ratiometric PEC assay and demonstrated admirably universal applicability for determination of various targets such as metal ions, miRNAs, DNAs, and proteins by merely two different photoactive materials (SiO2@MB and CdS QDs), paving the way to application of universal ratiometric PEC assay in environmental tests, clinical diagnosis, and other related subjects.


Assuntos
Bioensaio/métodos , Técnicas Eletroquímicas/métodos , MicroRNAs/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Processos Fotoquímicos , Técnicas Biossensoriais , Transporte de Elétrons , Nanoestruturas , Conformação de Ácido Nucleico , Sensibilidade e Especificidade
11.
Chem Commun (Camb) ; 53(54): 7525-7528, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28631794

RESUMO

An ultrasensitive fluorescence assay for intracellular Pb2+ determination was proposed through target-intermediate recycling amplification based on metal-assisted DNAzyme catalysis and strand displacement reactions. Compared with only target recycling-based fluorescence assay with an M amplification ratio, the proposed assay could achieve an M × N amplification ratio to obtain an improved sensitivity by more than 10 times, in which M and N are the amplification ratios of target recycling and intermediate recycling, respectively. Remarkably, this proposed ultrasensitive fluorescence assay could be applied to the determination of various analytes with the well-designed detection probe, especially in intracellular assay, providing a promising tool for clinical diagnosis and biomedical detection.

12.
Anal Chem ; 88(17): 8698-705, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27513736

RESUMO

In this work, a self-enhanced ultrasensitive photoelectrochemical (PEC) biosensor was established based on a functionalized nanocapsule packaging both donor-acceptor-type photoactive material and its sensitizer. The functionalized nanocapsule with self-enhanced PEC responses was achieved first by packaging both the donor-acceptor-type photoactive material (poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl}, PTB7-Th) and its sensitizer (nano-C60, fullerene) in poly(ethylene glycol) (PEG) to form a nanocapsule, which significantly enhanced PEC signal and stability of the PEC biosensor. Moreover, a quadratic enzymes-assisted target recycling amplification strategy was introduced to the system for ultrasensitive determination. Compared with other established PEC biosensors, our proposed self-enhanced approach showed higher effectivity, accuracy, sensitivity, and convenience without any addition of coreactant or sensitizers into the testing electrolyte for photocurrent amplification and performed excellent analytical properties for microRNA estimation down to femtomole level with microRNA-141 as a model. Additionally, the proposed PEC biosensor was employed for estimation of microRNA in different cancer cells and pharmacodynamic evaluation in cancer cells. This self-enhanced PEC strategy has laid the foundation for fabrication of simple, effective, and ultrasensitive PEC diagnostic devices, leading to the possibility for early diagnosis, timely stage estimation, and accurate prognosis judgment of disease.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Fulerenos/química , MicroRNAs/análise , Nanocápsulas/química , Polímeros/química , Humanos , Processos Fotoquímicos , Células Tumorais Cultivadas
13.
Chem Sci ; 7(12): 7094-7100, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451145

RESUMO

A simple and highly-efficient approach to monitor the expression of P-glycoprotein (P-gp) in cells was urgently needed to demonstrate the drug resistance of cancer cells. Herein, a competitive method-based electrochemiluminescent (ECL) assay with a single ECL indicator was proposed for the first time to efficiently estimate the concentration ratio of two proteins. By converting the different proteins to partially coincident nucleotide sequences via a sandwich type immunoassay on magnetic beads, the concentration ratio related ECL signals could be obtained via competitive nucleotide hybridization on an electrode surface. This method could thoroughly overcome the limitations of simultaneous ECL assays via multiple ECL indicators with inevitable cross reactions. At the same time, rolling circle amplification was employed to improve the detection performances, especially the detection limit and sensitivity. With P-gp and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a model, the proposed ECL assay was successfully employed to monitor the drug resistance of cancer cells. Compared with conventional technologies, improved sensitivity and accuracy were achieved with a correlation coefficient of 0.9928 and a detection limit of 0.52%. Success in the establishment of the competitive method-based ECL assay offered an efficient strategy to demonstrate the concentration ratio of two proteins and a potential approach for detecting other proteins and nucleotide sequences, revealing a new avenue for ultrasensitive biomolecule diagnostics, especially in cell function research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...