Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1101748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818353

RESUMO

Objective: The purpose of this study was to explore the effect of blood flow-restricted resistance training on myocardial fibrosis in early spontaneously hypertensive rats (SHRs). Methods: Four-week-old male Wistar-Kyoto rats and SHRs were randomly divided into the following groups: normal group (WKY), SHR control (SHR-SED) group, high-intensity resistance training (HIRT) group, low- and medium-intensity resistance training (LMIRT) group, and blood flow-restricted low- and medium-resistance training (BFRT) group. Body weight, hemodynamics, cardiac function, myocardial morphology and fibrosis, and the expression levels of transforming growth factor-beta1-Smad (TGFß-1-Smad) pathway-related proteins in the myocardium were assessed. Results: (1) BFRT lowered blood pressure significantly, decreased left ventricular wall thickness, and improved cardiac function. At the same time, BFRT was superior to traditional resistance training in lowering diastolic blood pressure, and was superior to HIRT in improving left ventricular compliance, reducing heart rate, and reducing left ventricular posterior wall and left ventricular mass (P < 0.05). (2) BFRT decreased collagen I and collagen fiber area in the myocardium, increased the collagen III area, and decreased the collagen I/III ratio (P < 0.05). BFRT produced a better proportion of myocardial collagen fibers than did traditional resistance training (P < 0.05). (3) In the myocardium of the BFRT group compared to the traditional resistance training group, the expression of TGFß-1, Smad2/3/4, p-Smad2/3, CTGF, and TIMP1 was significantly downregulated, MMP2 and TIMP2 were significantly upregulated, the MMP/TIMP ratio significantly increased, and TGFß-1 expression significantly decreased (P < 0.05). Conclusion: BFRT inhibited the TGFß-1-Smad pathway in the myocardium, downregulated the expression of CTGF, and regulated the balance between MMPs and TIMPs, thereby reducing myocardial fibrosis in SHR, and improving cardiac morphology and function. BFRT also lowered blood pressure, and achieved an effect of early prevention and treatment of hypertension. At the same time, BFRT was superior to traditional resistance training in reducing diastolic blood pressure and adjusting the proportion of myocardial collagen fibers.

2.
Diabetes Obes Metab ; 25(3): 823-831, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478087

RESUMO

AIM: To investigate the association between objective sleep parameters and glycaemic variability determined by continous glucose monitoring (CGM) among patients with type 2 diabetes, given the significant role of sleep in glycaemic control. METHODS: In this study, CGM was carried out in 28 patients with T2D (aged 62.3 ± 4.8 years, 57% women). Sleep characteristics were assessed by actigraphy within the CGM period. CGM-derived outcomes included glucose level, and percentages of time in range (TIR) and time above range (TAR) during the monitoring period. Associations between intraindividual night-to-night variations in sleep characteristics and overall CGM outcomes were analysed using linear regression. Associations between sleep characteristics during each night and time-matched CGM outcomes were analysed using linear mixed models. RESULTS: A total of 249 person-days of CGM, coupled with 221 nights of sleep characteristics, were documented. Greater standard deviation (SD) of objective sleep duration (minutes) between measurement nights was associated with higher glucose level (coefficient 0.018 mmol/L [95% confidence interval {CI} 0.004, 0.033], P = 0.017), smaller proportion of TIR (% in observation period; coefficient -0.20% [95% CI -0.36, -0.03], P = 0.023), and greater proportion of TAR (coefficient 0.22% [95% CI 0.06, 0.39], P = 0.011). Later sleep midpoint (minutes from midnight) was associated with greater SD of glucose during the same sleep period (coefficient 0.002 minutes [95% CI 0.0001, 0.003], P = 0.037), longer nocturnal sleep duration was associated with smaller coefficient of variation of glucose level in the upcoming day (-0.015% [95% CI -0.03, -0.001], P = 0.041). CONCLUSION: Objectively determined sleep duration and sleep midpoint, as well as their daily variability, are associated with CGM-derived glucose profiles in T2D patients.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Masculino , Diabetes Mellitus Tipo 2/complicações , Glicemia/análise , Automonitorização da Glicemia , Glucose , Duração do Sono
3.
Front Endocrinol (Lausanne) ; 13: 937264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903270

RESUMO

Introduction: Type 2 diabetes patients have abdominal obesity and low thigh circumference. Previous studies have mainly focused on the role of exercise in reducing body weight and fat mass, improving glucose and lipid metabolism, with a lack of evaluation on the loss of muscle mass, diabetes complications, energy metabolism, and brain health. Moreover, whether the potential physiological benefit of exercise for diabetes mellitus is related to the modulation of the microbiota-gut-brain axis remains unclear. Multi-omics approaches and multidimensional evaluations may help systematically and comprehensively correlate physical exercise and the metabolic benefits. Methods and Analysis: This study is a randomized controlled clinical trial. A total of 100 sedentary patients with type 2 diabetes will be allocated to either an exercise or a control group in a 1:1 ratio. Participants in the exercise group will receive a 16-week combined aerobic and resistance exercise training, while those in the control group will maintain their sedentary lifestyle unchanged. Additionally, all participants will receive a diet administration to control the confounding effects of diet. The primary outcome will be the change in body fat mass measured using bioelectrical impedance analysis. The secondary outcomes will include body fat mass change rate (%), and changes in anthropometric indicators (body weight, waist, hip, and thigh circumference), clinical biochemical indicators (glycated hemoglobin, blood glucose, insulin sensitivity, blood lipid, liver enzyme, and renal function), brain health (appetite, mood, and cognitive function), immunologic function, metagenomics, metabolomics, energy expenditure, cardiopulmonary fitness, exercise-related indicators, fatty liver, cytokines (fibroblast growth factor 21, fibroblast growth factor 19, adiponectin, fatty acid-binding protein 4, and lipocalin 2), vascular endothelial function, autonomic nervous function, and glucose fluctuation. Discussion: This study will evaluate the effect of a 16-week combined aerobic and resistance exercise regimen on patients with diabetes. The results will provide a comprehensive evaluation of the physiological effects of exercise, and reveal the role of the microbiota-gut-brain axis in exercise-induced metabolic benefits to diabetes. Clinical Trial Registration: http://www.chictr.org.cn/searchproj.aspx, identifier ChiCTR2100046148.


Assuntos
Diabetes Mellitus Tipo 2 , Treinamento Resistido , Glicemia/metabolismo , Peso Corporal , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Humanos , Obesidade , Obesidade Abdominal , Ensaios Clínicos Controlados Aleatórios como Assunto , Coxa da Perna
4.
Front Physiol ; 13: 833809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514351

RESUMO

Background: The effect of resistance exercise on the autonomic nervous system of patients with hypertension has not been identified. Objective: To explore a suitable resistance training method for hypertension patients to regulate blood pressure (BP) and autonomic nervous system function. Method: Forty-five hypertension patients aged between 55 and 70 years were randomly equally divided into three groups: the high-intensity resistance exercise (HE) group, the low-intensity resistance exercise combined with blood flow restriction (LE-BFR) group, and the low-intensity resistance exercise (LE) group. All patients performed quadriceps femoris resistance exercise. The exercise intensity of HE, LE-BFR and LE group was 65, 30 and 30% of one repetition maximum (1RM), respectively. The LE-BFR group used pressure cuffs to provide 130% of systolic pressure to the patient's thighs during resistance exercise. The training program was 20 times/min/set with a 1-min break after each set, and was conducted five sets/day and 3 days/week, lasting for 12 weeks. The heart rate (HR), BP, root-mean-square of difference-value of adjacent RR intervals (RMSSD), low frequency (LF) and high frequency (HF) were evaluated before and after the first training and the last training. Result: Significant differences in HR were observed in both recovery states after the first and last training (p < 0.01). After 12 weeks of training, the recovery speed of HR in the LE-BFR group increased significantly (p < 0.01). The systolic blood pressures in the HE and LE-BFR group were significantly reduced (p < 0.05 and p < 0.01), and the differences among groups were significant (p < 0.01). In the last recovery state, the RMSSD of the LE group was significantly lower than that in the first recovery state (p < 0.01). The LF/HF ratios of the HE and LE groups in the resting and recovery states were increased significantly (all p < 0.01). LF/HF ratios in the LE-BFR group in the resting and recovery state were decreased significantly (both p < 0.01). Conclusion: Compared to HE and LE, LE-BFR could effectively decrease systolic pressure and regulate the autonomic nervous system function in hypertension patients.

5.
Front Physiol ; 13: 829718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535353

RESUMO

Objective: The purpose of this study was to explore the effect of blood flow-restricted low resistance training on microvascular rarefaction in the myocardium of spontaneously hypertensive rats (SHRs). Methods: Four-week-old male SHRs were randomly divided into the following groups: Wistar-Kyoto (WKY), SHR control (SHR-SED), high-intensity resistance training (HIRT), low-intensity resistance training (LIRT), and blood flow-restricted low resistance training (BFRT). The exercise groups began to receive exercise intervention for 8 weeks at the age of 7 weeks. Blood pressure (BP), heart rate (HR), cardiac function, capillary density, and Vascular endothelial growth factor -Phosphatidylinositol 3-kinase-Protein kinase B-Endothelial nitric oxide synthetase (VEGF-Pi3k-Akt-eNOS) were assessed. Results: 1) BP and HR of BFRT decreased significantly, Ejection fraction (EF) and Fraction shortening (FS) increased, and the effect of BFRT on lowering BP and HR was better than that of other groups (p < 0.05); 2) The expression of VEGF, VEGFR2, p-VEGFR2, Pi3k, Akt, p-Akt, eNOS and p-eNOS in the myocardium of the BFRT was significantly upregulated, and eNOS expression was significantly higher than other groups (p < 0 05); 3) the expression of VEGF in the blood of the BFRT was significantly upregulated, higher than SHR-SED, lower than HIRT (p < 0.05), and there was no significant difference between BFRT and LIRT(p > 0.05); 4) the capillary density in the myocardium of BFRT was significantly higher than other exercise groups (p < 0 05). Conclusion: Blood flow-restricted low resistance training can activate the VEGF-Pi3k-Akt-eNOS pathway, upregulate the expression of VEGF in blood, improve microvascular rarefaction, and promote myocardial microvascular circulation, thereby improving cardiac function and lowering blood pressure, achieving the preventive effect of early hypertension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...