Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Chembiochem ; 24(20): e202300330, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37671838

RESUMO

[Fe]-hydrogenase catalyzes the heterolytic cleavage of H2 and reversible hydride transfer to methenyl-tetrahydromethanopterin. The iron-guanylylpyridinol (FeGP) cofactor is the prosthetic group of this enzyme, in which mononuclear Fe(II) is ligated with a pyridinol and two CO ligands. The pyridinol ligand fixes the iron by an acyl carbon and a pyridinol nitrogen. Biosynthetic proteins for this cofactor are encoded in the hmd co-occurring (hcg) genes. The function of HcgB, HcgC, HcgD, HcgE, and HcgF was studied by using structure-to-function analysis, which is based on the crystal structure of the proteins and subsequent enzyme assays. Recently, we reported the catalytic properties of HcgA and HcgG, novel radical S-adenosyl methionine enzymes, by using an in vitro biosynthesis assay. Here, we review the properties of [Fe]-hydrogenase and the FeGP cofactor, and the biosynthesis of the FeGP cofactor. Finally, we discuss the expected engineering of [Fe]-hydrogenase and the FeGP cofactor.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/metabolismo , Carbono/metabolismo , Proteínas Ferro-Enxofre/química , Ferro/química
3.
Chembiochem ; 24(20): e202300390, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37455264

RESUMO

Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) constitute major hydrogen donors for oxidative/reductive bio-transformations. NAD(P)H regeneration systems coupled with formate dehydrogenases (FDHs) represent a dreamful method. However, most of the native FDHs are NAD+ -dependent and suffer from insufficient reactivity compared to other enzymatic tools, such as glucose dehydrogenase. An efficient and competitive NADP+ -utilizing FDH necessitates the availability and robustness of NADPH regeneration systems. Herein, we report the engineering of a new FDH from Candida dubliniensis (CdFDH), which showed no strict NAD+ preference by a structure-guided rational/semi-rational design. A combinatorial mutant CdFDH-M4 (D197Q/Y198R/Q199N/A372S/K371T/▵Q375/K167R/H16L/K159R) exhibited 75-fold intensification of catalytic efficiency (kcat /Km ). Moreover, CdFDH-M4 has been successfully employed in diverse asymmetric oxidative/reductive processes with cofactor total turnover numbers (TTNs) ranging from 135 to 986, making it potentially useful for NADPH-required biocatalytic transformations.


Assuntos
Formiato Desidrogenases , NAD , NADP/metabolismo , NAD/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Engenharia de Proteínas/métodos , Oxirredução
4.
J Hazard Mater ; 458: 131986, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413797

RESUMO

Polyethylene (PE) and industrial dyes are recalcitrant pollutants calling for the development of sustainable solutions for their degradation. Laccases have been explored for removal of contaminants and pollutants, including dye decolorization and plastic degradation. Here, a novel thermophilic laccase from PE-degrading Lysinibaccillus fusiformis (LfLAC3) was identified through a computer-aided and activity-based screening. Biochemical studies of LfLAC3 indicated its high robustness and catalytic promiscuity. Dye decolorization experiments showed that LfLAC3 was able to degrade all the tested dyes with decolorization percentage from 39% to 70% without the use of a mediator. LfLAC3 was also demonstrated to degrade low-density polyethylene (LDPE) films after eight weeks of incubation with either crude cell lysate or purified enzyme. The formation of a variety of functional groups was detected using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Damage on the surfaces of PE films was observed via scanning electron microscopy (SEM). The potential catalytic mechanism of LfLAC3 was disclosed by structure and substrate-binding modes analysis. These findings demonstrated that LfLAC3 is a promiscuous enzyme that has promising potential for dye decolorization and PE degradation.


Assuntos
Poluentes Ambientais , Polietileno , Lacase/metabolismo , Corantes/química , Hidrolases
5.
J Agric Food Chem ; 71(8): 3852-3861, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790033

RESUMO

Ginsenosides are the main bioactive ingredients in plants of the genus Panax. Vina-ginsenoside R7 (VG-R7) is one of the rare high-value ginsenosides with health benefits. The only reported method for preparing VG-R7 involves inefficient and low-yield isolation from highly valuable natural resources. Notoginsenoside Fc (NG-Fc) isolated in the leaves and stems of Panax notoginseng is a suitable substrate for the preparation of VG-R7 via specific hydrolysis of the outside xylose at the C-20 position. Here, we first screened putative enzymes belonging to the glycoside hydrolase (GH) families 1, 3, and 43 and found that KfGH01 can specifically hydrolyze the ß-d-xylopyranosyl-(1 → 6)-ß-d-glucopyranoside linkage of NG-Fc to form VG-R7. The I248F/Y410R variant of KfGH01 obtained by protein engineering displayed a kcat/KM value (305.3 min-1 mM-1) for the reaction enhanced by approximately 270-fold compared with wild-type KfGH01. A change in the shape of the substrate binding pockets in the mutant allows the substrate to sit closer to the catalytic residues which may explain the enhanced catalytic efficiency of the engineered enzyme. This study identifies the first glycosidase for bioconversion of a ginsenoside with more than four sugar units, and it will inspire efforts to investigate other promising enzymes to obtain valuable natural products.


Assuntos
Ginsenosídeos , Panax notoginseng , Panax , Ginsenosídeos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Panax/química , Panax notoginseng/metabolismo , Hidrólise
6.
J Environ Manage ; 333: 117464, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764176

RESUMO

Fungal degradation of cellulose is a key step in the conversion of organic matter in composting. This study investigated the effects of adding 10% biochar (including, prepared from corn stalk and rape stalk corresponding to CSB and RSB) on organic matter transformation in composting and determined the role of cellulase and fungal communities in the conversion of organic matter. The results showed that biochar could enhance the conversion of organic matter, especially in RSB treatment. Biochar could increase cellulase activity, and RSB could enhance 33.78% and 30.70% the average activity of cellulase compared with the control and CSB treatments in the mesophilic to thermophilic phase, respectively. The results of high throughput sequencing demonstrated that Basidiomycota dominant in mesophilic phase, and Ascomycota dominant in other phases of composting. The redundancy analysis showed that Alternaria, Thermomycees, Aspergillus, Wallemia, and Melanocarpus might be the key fungi for the degradation of organic matter, and Fusarium, Penicillium, and Scopulariopsis may promote the conversion of organic matter. Network showed that the addition of RSB changed the interactions between fungal communities and organic matter transformation, and RSB treatment enriched members of Ascomycota related to organic matter transformation and cellulase activity. These results indicated that RSB improved organic matter conversion by enhancing the role of cellulase and fungal communities.


Assuntos
Celulases , Compostagem , Micobioma , Animais , Suínos , Solo , Esterco/microbiologia , Carvão Vegetal
7.
J Environ Manage ; 325(Pt A): 116478, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272291

RESUMO

The occurrence of pharmaceutical active compounds (PhACs) in aquatic environments is a cause for concern due to potential adverse effects on human and ecosystem health. Constructed wetlands (CWs) are cost-efficient and sustainable wastewater treatment systems for the removal of these PhACs. The removal processes and mechanisms comprise a complex interplay of photodegradation, biodegradation, phytoremediation, and sorption. This review synthesized the current knowledge on CWs for the removal of 20 widely detected PhACs in wastewater. In addition, the major removal mechanisms and influencing factors are discussed, enabling comprehensive and critical understanding for optimizing the removal of PhACs in CWs. Consequently, potential strategies for intensifying CWs system performance for PhACs removal are discussed. Overall, the results of this review showed that CWs performance in the elimination of some pharmaceuticals was on a par with conventional wastewater treatment plants (WWTPs) and, for others, it was above par. Furthermore, the findings indicated that system design, operational, and environmental factors played important but highly variable roles in the removal of pharmaceuticals. Nonetheless, although CWs were proven to be a more cost-efficient and sustainable technology for pharmaceuticals removal than other engineered treatment systems, there were still several research gaps to be addressed, mainly including the fate of a broad range of emerging contaminants in CWs, identification of specific functional microorganisms, transformation pathways of specific pharmaceuticals, assessment of transformation products and the ecotoxicity evaluation of CWs effluents.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Águas Residuárias/análise , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Ecossistema , Biodegradação Ambiental , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 858(Pt 2): 159926, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343827

RESUMO

The bioavailability of phosphorus is a vital index for evaluating the quality of compost products. This study examined the effects of adding wheat straw biochar (WSB) and bamboo charcoal (BC) on the transformation of various phosphorus fractions during composting, as well as analyzing the roles of the phoD-harboring bacterial community in the transformation of phosphorus fractions. Adding WSB and BC reduced the available phosphorus content in the compost products by 35.2 % and 38.5 %, respectively. Redundancy analysis showed that the alkaline phosphatase content and pH were the most important factors that affected the transformation of phosphorus fractions. The addition of biochar resulted in changes in the composition and structures of the phoD-harboring bacteria communities during composting. In addition, the key bacterial genera that secreted alkaline phosphatase and decomposed different forms of phosphorus under WSB and BC were different compared with those under control. Network and correlation analysis demonstrated that the activities of phoD-harboring bacteria could have been enhanced by biochar to accelerate the consumption of available phosphorus, and the activities of key phosphorus-solubilizing bacteria (Lysobacter, Methylobacterium, and Saccharothrix) might be inhibited when the pH increased, thereby increasing the insoluble phosphorus content.


Assuntos
Compostagem , Suínos , Animais , Esterco/microbiologia , Carvão Vegetal , Fósforo , Disponibilidade Biológica , Fosfatase Alcalina , Solo , Bactérias , Triticum
9.
Angew Chem Int Ed Engl ; 61(50): e202213239, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36264001

RESUMO

In the biosynthesis of the iron-guanylylpyridinol (FeGP) cofactor, 6-carboxymethyl-5-methyl-4-hydroxy-2-pyridinol (1) is 3-methylated to form 2, then 4-guanylylated to form 3, and converted into the full cofactor. HcgA-G proteins catalyze the biosynthetic reactions. Herein, we report the function of two radical S-adenosyl methionine enzymes, HcgA and HcgG, as uncovered by in vitro complementation experiments and the use of purified enzymes. In vitro biosynthesis using the cell extract from the Methanococcus maripaludis ΔhcgA strain was complemented with HcgA or precursors 1, 2 or 3. The results suggested that HcgA catalyzes the biosynthetic reaction that forms 1. We demonstrated the formation of 1 by HcgA using the 3 kDa cell extract filtrate as the substrate. Biosynthesis in the ΔhcgG system was recovered by HcgG but not by 3, which indicated that HcgG catalyzes the reactions after the biosynthesis of 3. The data indicated that HcgG contributes to the formation of CO and completes biosynthesis of the FeGP cofactor.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/metabolismo , Extratos Celulares , Proteínas Ferro-Enxofre/metabolismo , S-Adenosilmetionina/metabolismo , Ferro/metabolismo
10.
Sci Total Environ ; 843: 157039, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35777569

RESUMO

Constructed wetlands (CWs) are widely used for non-point source pollution control and water environmental quality improvement. Though it is effective in water quality improvement under most conditions, the overall impacts on the ecological environment in terms of greenhouse gases (GHGs) emissions is a growing concern. Besides, large area requirement has limited further applications of the technology in urban areas. A novel assessment tool of integrating grey water footprint into the ecological footprint framework is established for the assessment of pilot-scale CWs. Findings are compared with a natural riparian wetland adjacent to the researched CWs which were monitored simultaneously. Results demonstrated the CWs had relatively good water quality polishing performance, especially for nitrogen removal. Nonetheless, a large amount of CO2 and some CH4 and N2O emissions were recorded. Meanwhile, a substantial amount of CO2 was also sequestrated by wetland plants via photosynthesis. The strong reducing environment of the CWs inhibited CO2 and N2O generation to a great extent. Calculation of all gaseous emissions and sequestration in CO2 equivalents demonstrated that CWs are an efficient carbon sink. By contrast, the natural wetland was a carbon source because of the high emission of CO2 and N2O under its weak reducing environment conditions and low gross primary production. The carbon footprints of the constructed and natural wetlands were -24.24 and 12.99 gha respectively. Modified ecological footprint values were determined by integrating the carbon footprint, water footprint and build-up lands footprint, and a value of -24.36 gha was obtained for the CWs and 12.99 gha for the natural wetlands. The results indicated that the CWs had substantial beneficial impacts on the ecological environment. On account of the multifunctional service values provided by the CWs, a typical paradigm for water pollution remediation and carbon sequestration was presented for ecological and environmental governance, especially for riparian areas.


Assuntos
Dióxido de Carbono , Áreas Alagadas , Conservação dos Recursos Naturais , Política Ambiental , Metano , Óxido Nitroso
11.
Chemosphere ; 307(Pt 1): 135701, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35842049

RESUMO

This study demonstrates the enantioselective removal dynamics and mechanisms of the chiral herbicide metolachlor in a hydroponic system of Phragmites australis. It presents the first work to elucidate plant-microbial driven enantioselective degradation processes of chiral chemicals. The results showed a degradation efficiency of up to 95.07 ± 2.81% in the hydroponic system driven by a notably high degradation rate constant of 0.086 d-1. P. australis was demonstrated to rapidly increase the contribution of biodegradation pathways in the hydroponic system to 82.21 ± 4.81% within 4 d with an enantiomeric fraction (EF) drop to 0.26 ± 0.02 to favour the enantioselective degradation of S-Metolachlor (kS-Metolachlor = 0.568 d-1 and kR-Metolachlor = 0.147 d-1). Comparatively, the biodegradation pathways in the control constituted less than 25%, with an EF value of circa 0.5. However, the enantioselective biodegradation pathways exhibited complete reversal after about 4 d to favour R-Metolachlor. Plants promoted the degradation of R-Metolachlor, evidenced by an increase in EF to 0.59 ± 0.03. Nonetheless, metolachlor showed an inhibitory effect on plants reflected by the reduction of plant growth rate, chlorophyll content, and electron transport rate to -7.85 ± 1.52%, 1.33 ± 0.43 mg g-1, 4.03 ± 1.33 µmol (m2 s)-1, respectively. However, rhizosphere microorganisms aided plants to catalyze excessive reactive oxygen species production by the antioxidant enzymes to protect plants from oxidative damage and restore their physiological activities. High-throughput analysis of microbial communities demonstrated the enrichment of Massilia (40.63%) and Pseudomonas (8.16%) in the initial stage to promote the rapid degradation of S-Metolachlor. By contrast, the proliferation of Brevundimonas (32.29%) and Pseudarthrobacter (11.03%) in the terminal stage was closely associated with the degradation of R-Metolachlor. Moreover, as symbiotic bacteria of plants, these bacteria aided plants protection from reactive oxygen damages and promoted the recovery of plant metabolic functions and photosynthesis. Overall, these results demonstrate biodegradation mediated by plant-microbe mechanisms as the main driver for the enantioselective degradation of metolachlor in hydroponic systems.


Assuntos
Herbicidas , Acetamidas , Antioxidantes , Biodegradação Ambiental , Clorofila , Herbicidas/química , Hidroponia , Oxigênio , Plantas/metabolismo , Espécies Reativas de Oxigênio
12.
Sci Total Environ ; 845: 157300, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842169

RESUMO

Free water surface flow (FWS) constructed wetlands (CWs) have been broadly applied for polishing secondary treated effluents. Dissolved organic matter derived from FWS CWs (WDOM) plays key roles in contaminants transformations. Conversely, photodegradation could shape the quantity and quality of WDOM, thereby affecting its roles in the photolysis of organic micropollutants (OMPs). Nevertheless, whether and how solar irradiation-induced photodegradation modify the properties of WDOM, and the effects of WDOM on the photodegradation of OMPs remain unclear. This study elucidates the photochemical behavior of two WDOM isolated from field-scale FWS CWs for effluent polishing under simulated sunlight irradiation using spectroscopic tools and high-resolution mass spectra. Furthermore, the roles of WDOM in the photodegradation of Bisphenol A (BPA), as a representative endocrine-disrupting compound (EDC), were comprehensively investigated. Solar irradiation was demonstrated to lower the molecular weight and aromaticity of WDOM, as well as weaken its light absorption. Ultrahigh-resolution mass spectra further confirmed that aromatic and unsaturated structures were susceptible to solar irradiation-induced photodegradation reactions. Subsequently, less aromatic and more saturated structures eventually formed under sunlight irradiation, consistent with the result from spectroscopic characterization. The reactive species produced from WDOM significantly enhanced the photodegradation of BPA with the kobs noticeably increasing 4-fold compared with the kobs for direct photolysis. Additionally, 3WDOM* was identified as the dominant reactive species leading to the photolysis of BPA in the presence of WDOM. These findings improve understanding of the phototransformation behavior of WDOM under sunlight irradiation and the roles that WDOM plays in the photochemical fate of coexisting OMPs in CWs treatment systems.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Compostos Benzidrílicos , Matéria Orgânica Dissolvida , Fenóis , Fotólise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Áreas Alagadas
13.
Radiol Cardiothorac Imaging ; 4(2): e210172, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35506138

RESUMO

Purpose: To investigate myocardial remodeling using cardiac MRI (CMR) feature tracking (FT) and to explore the relationship between CMR parameters with outcomes in hypertrophic obstructive cardiomyopathy (HOCM) after myectomy. Materials and Methods: In this single-center retrospective study, patients with HOCM undergoing myectomy between 2011 and 2019 were included. Pre- and postmyectomy global and regional strains were compared. Healthy participants were included for comparison. Composite events were recorded at follow-up performed after a minimum of 12 months. The paired-samples t test was utilized to compare pre- and postmyectomy variables. Results: A total of 73 patients (44 years ± 14 [SD]; 45 men) were evaluated. Compared with preoperative parameters, global circumferential strain (CS) (-17.6% ± 4.4 vs -16.7% ± 3.9, P = .02) was impaired, but global longitudinal strain (LS) was improved (-9.3% ± 2.8 vs -10.8% ± 3.3, P < .001). Septal CS (-14.2% ± 4.0 vs -11.0% ± 4.4, P < .001) and septal radial strain (RS) (16.4% ± 10.6 vs 13.7% ± 9.5, P = .007) worsened, while septal LS (-8.1% ± 3.5 vs -10.2% ± 3.4, P < .001), lateral RS (40.1% ± 16.6 vs 54.4% ± 22.6, P < .001), lateral CS (-20.2% ± 4.1 vs -23.1% ± 4.8, P < .001), and lateral LS (-5.6% ± 5.6 vs -8.4% ± 5.2, P = .001) were improved. Sixteen of 73 patients (22%) experienced composite events after median follow-up of 39.1 months. Postoperative global CS provided the highest discrimination for composite event occurrence (area under the receiver operating characteristic curve, 0.73; 95% CI: 0.61, 0.83) with a cutoff of -16.7%. Patients with postoperative global CS greater than -16.7% had reduced event-free survival compared with those with postoperative global CS less than or equal to -16.7% (log-rank P = .002). Conclusion: CMR-FT analysis demonstrated longitudinal and lateral restorations, but impaired global CS, after myectomy in patients with HOCM; furthermore, increased global CS was associated with poorer outcomes.Keywords: MR Imaging, Cardiac, Outcomes Analysis, Comparative Studies, Surgery© RSNA, 2022 Supplemental material is available for this article.

14.
Bioresour Technol ; 354: 127217, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35470002

RESUMO

This study demonstrates effects of sulfamethoxazole (SMX) on carbon-nitrogen transformation pathways and microbial community and metabolic function response mechanisms in constructed wetlands. Findings showed co-metabolism of SMX with organic pollutants resulted in high removal of 98.92 ± 0.25% at influent concentrations of 103.08 ± 13.70 µg/L (SMX) and 601.92 ± 22.69 mg/L (COD), and 2 d hydraulic retention. Microbial community, co-occurrence networks, and metabolic pathways analyses showed SMX promoted enrichment of COD and SMX co-metabolizing bacteria like Mycobacterium, Chryseobacterium and Comamonas. Relative abundances of co-metabolic pathways like Amino acid, carbohydrate, and Xenobiotics biodegradation and metabolism were elevated. SMX also increased relative abundances of the resistant heterotrophic nitrification-aerobic denitrification bacteria Paracoccus and Comamonas and functional genes nxrA, narI, norC and nosZ involved in simultaneous heterotrophic nitrification-aerobic denitrification. Consequently, denitrification rate increased by 1.30 mg/(L∙d). However, insufficient reaction substrate and accumulation of 15.29 ± 2.30 mg/L NO3--N exacerbate inhibitory effects of SMX on expression of some denitrification genes.


Assuntos
Microbiota , Áreas Alagadas , Antibacterianos , Bactérias/genética , Carbono , Desnitrificação , Nitrificação , Nitrogênio/análise , Sulfametoxazol , Águas Residuárias/química
15.
Appl Environ Microbiol ; 88(9): e0034122, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35442081

RESUMO

Isopropanol dehydrogenase (IPADH) is one of the most attractive options for nicotinamide cofactor regeneration due to its low cost and simple downstream processing. However, poor thermostability and strict cofactor dependency hinder its practical application for bioconversions. In this study, we simultaneously improved the thermostability (433-fold) and catalytic activity (3.3-fold) of IPADH from Brucella suis via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H) by 1.23 × 106-fold. When these variants were employed in three typical bioredox reactions to drive the synthesis of important chiral pharmaceutical building blocks, they outperformed the commonly used cofactor regeneration systems (glucose dehydrogenase [GDH], formate dehydrogenase [FDH], and lactate dehydrogenase [LDH]) with respect to efficiency of cofactor regeneration. Overall, our study provides two promising IPADH variants with complementary cofactor specificities that have great potential for wide applications. IMPORTANCE Oxidoreductases represent one group of the most important biocatalysts for synthesis of various chiral synthons. However, their practical application was hindered by the expensive nicotinamide cofactors used. Isopropanol dehydrogenase (IPADH) is one of the most attractive biocatalysts for nicotinamide cofactor regeneration. However, poor thermostability and strict cofactor dependency hinder its practical application. In this work, the thermostability and catalytic activity of an IPADH were simultaneously improved via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H). The resultant variants show great potential for regeneration of nicotinamide cofactors, and the engineering strategy might serve as a useful approach for future engineering of other oxidoreductases.


Assuntos
NAD , Niacinamida , 2-Propanol , Formiato Desidrogenases/genética , NADP , Regeneração
16.
Bioresour Technol ; 351: 126997, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35292382

RESUMO

This study demonstrates the stereoselective degradation patterns and biodegradation mechanisms of metolachlor (MET) and napropamide (NAP) in integrated vertical flow constructed wetlands (IVCW). The higher interphase transferability of NAP resulted in higher degradation rates of 90.60 ± 4.09%. The enantiomeric fraction (EF) values of 0.38 ± 0.02 and 0.54 ± 0.03, respectively, recorded for the enantiomers S-MET and R-NAP, with higher herbicidal activities, demonstrated their highly selective biodegradation patterns. The antioxidant enzyme activities and fluorescence parameters of plants showed positive correlations with the degradation efficiency and enantioselectivity of MET and NAP. Adaptive regulations by plants promoted the proliferation of microbial genera like Enterobacter and unclassified_Burkholderiales, which could facilitate plant growth. Moreover, enrichment of the herbicide-degrading functional bacteria Terrimonas (5.10%), Comamonas (4.05%) Pseudoxanthomonas (4.49%) and Mycobacterium (1.42%) demonstrably promoted the preferential degradation of S-MET and R-NAP. Furthermore, the abundance of Ferruginibacter favored the use of R-NAP as carbon source to achieve co-removal of R-NAP and NO3--N.


Assuntos
Herbicidas , Áreas Alagadas , Amidas , Bactérias/metabolismo , Biodegradação Ambiental , Herbicidas/metabolismo , Plantas/metabolismo
17.
J Hazard Mater ; 424(Pt C): 127611, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740163

RESUMO

Vegetations play a vital role in the ecological function of constructed wetlands (CW), but the systemic phytoremediation mechanism of CW is still unclear. An integrated vertical-flow constructed wetland (IVCW) was established to elucidate the phytoremediation mechanisms and plants eco-physiological response to an emerging contaminant, sulfamethoxazole (SMX). Attenuation of SMX in IVCW with and without vegetation (Acorus calamus) are comparatively analyzed. The results showed significant enhancement of removal efficiencies of total nitrogen (via intensified denitrification) and SMX by up to 10% respectively with vegetation. A unique micro-rhizo environment was created by stimulating the denitrifiers, Clostridium_sensu_stricto, Ignavibacterium, Rhodanobacter, and Geobacter. Free-living plant growth-promoting bacteria, unclassified_Burkholderiales and unclassified_Betaproteobacteria, proliferated in the rhizosphere, protecting the growth mechanism of A. calamus and, consequently, promoting performance of the IVCW. Overall, A. calamus exhibited tolerance to SMX, maintaining its photosynthesis rate and stabilizing the plant cell structure by an effective antioxidant system. The growth and defense mechanisms of A. calamus appeared to positively correlate with the IVCW performance, whereby the photosynthetic rate and antioxidant enzymes activities peaked together with the maximum removal efficiency of TN (77.81%) and SMX (99.88%). The contribution of vegetation to ecotoxicity reduction in CW might be underrated as absorbed SMX could be phytodegraded into less toxic metabolites via specific enzymes.


Assuntos
Águas Residuárias , Áreas Alagadas , Biodegradação Ambiental , Nitrogênio/análise , Sulfametoxazol
18.
ChemSusChem ; 15(9): e202101741, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34519416

RESUMO

Microbial synthesis of plant-based (-)-menthol is of great interest because of its high demand (≈30 kiloton per year) as well as unique odor and cooling characteristics. However, this remains a great challenge due to the yet unfilled gap between (-)-limonene and (+)-cis-isopulegone. Herein, the first artificial and effective system was developed for (+)-cis-isopulegone biosynthesis from (-)-limonene by recruiting two bacterial enzymes to replace their inefficient counterparts from Mentha piperita, limonene-3-hydroxylase, and isopiperitenol dehydrogenase. A cofactor self-regenerative recombinant Escherichia coli strain was constructed by introducing a formate dehydrogenase for nicotinamide adenine dinucleotide phosphate (NADPH) regeneration and an engineered microbial isopiperitenol dehydrogenase. The production of (+)-cis-isopulegone (up to 281.2 mg L-1 ) was improved by 36 times compared with that of the initial strain. This work lays a reliable foundation for the microbial synthesis of (-)-menthol.


Assuntos
Mentha piperita , Mentol , Monoterpenos Cicloexânicos , Limoneno
19.
ESC Heart Fail ; 8(6): 5565-5567, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582130

RESUMO

Primary pulmonary artery sarcoma (PAS) is an extremely rare malignant disorder that presents like pulmonary thromboembolism (PE). Primary osteogenic sarcoma in the pulmonary artery (PA) is even rarer and can produce osteoid or cartilaginous matrix. Few studies have described the radiographic characteristics of osteosarcoma of the PA. We there report a case of a 78-year-old male patient with osteosarcoma in the PA where the patient went through surgical treatment after careful multimodalityimaging assessment. The patient was admitted to our hospital with the nonspecific symptom of heart failure. Multimodality imaging showed the primary lesion adhering to the arterial wall but without invading into surrounding tissues. PET/CT showed signs of hypometabolic activity within the lumen of the main PA. Cardiac MRI showed preserved left ventricular systolic function. CT showed distinctive features of PA osteosarcoma (a slightly hyperdense mass with calcification in pulmonary trunk).


Assuntos
Neoplasias Ósseas , Osteossarcoma , Embolia Pulmonar , Neoplasias Vasculares , Idoso , Neoplasias Ósseas/patologia , Humanos , Masculino , Imagem Multimodal , Osteossarcoma/diagnóstico , Osteossarcoma/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Artéria Pulmonar/diagnóstico por imagem , Embolia Pulmonar/diagnóstico por imagem , Neoplasias Vasculares/diagnóstico por imagem , Neoplasias Vasculares/patologia
20.
Chem Commun (Camb) ; 57(81): 10584-10587, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34559867

RESUMO

A carbonyl reductase variant, SmCRM5, from Serratia marcescens was obtained through structure-guided directed evolution. The variant showed improved specific activity (U mg-1) towards most of the 16 tested substrates and gave high stereoselectivities of up to 99% in the asymmetric synthesis of 13 γ-/δ-lactones. In particular, SmCRM5 showed a 13.8-fold higher specific activity towards the model substrate, i.e., 5-oxodecanoic acid, and gave (R)-δ-decalactone in 99% ee with a space-time yield (STY) of 301 g L-1 d-1. The preparative synthesis of six δ-lactones in high yields and with high enantiopurities showed the feasibility of the biocatalytic synthesis of these high-value-added chemicals, providing a cost-effective and green alternative to noble-metal catalysis.


Assuntos
Oxirredutases do Álcool/metabolismo , Lactonas/metabolismo , Engenharia de Proteínas , Cinética , Lactonas/química , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...